Fermionic Novikov bialgebras, fermionic Novikov Yang-Baxter equations and Rota-Baxter operators

被引:0
|
作者
Lu, Dilei [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Fermionic Novikov bialgebras; Pre-Lie algebras; Rota-Baxter operators; Yang-Baxter equations; HAMILTONIAN OPERATORS; ALGEBRAS;
D O I
10.1080/00927872.2025.2473680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fermionic Novikov algebras are a special class of pre-Lie algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we establish a bialgebra theory for fermionic Novikov algebras via the Manin triples approach. Explicitly, we introduce the notion of a fermionic Novikov bialgebra which is equivalent to a Manin triple of fermionic Novikov algebras as well as a certain matched pair of fermionic Novikov algebras. Moreover, we construct a special fermionic Novikov bialgebra, called quasi-triangular, from a solution of the fermionic Novikov Yang-Baxter equation (FNYBE) whose antisymmetric part is invariant. In particular, a symmetric solution of the FNYBE in a fermionic Novikov algebra provide a triangular fermionic Novikov bialgebra, whereas in turn the notion of pre-fermionic Novikov algebras are also introduced to produce the former. As another subclasses of quasi-triangular fermionic Novikov bialgebras, factorizable fermionic Novikov bialgebras lead to a factorization of the underlying fermionic Novikov algebras. Finally, we show that a quadratic Rota-Baxter fermionic Novikov algebra of weight 0 gives rise to a triangular fermionic Novikov bialgebra. Futhermore, there is a one-to-one correspondence between quadratic Rota-Baxter fermionic Novikov algebras of nonzero weights and factorizable fermionic Novikov bialgebras.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] QUASITRIANGULAR COVARIANT MONOIDAL BIHOM-BIALGEBRAS, ASSOCIATIVE MONOIDAL BIHOM-YANG-BAXTER EQUATIONS AND ROTA-BAXTER PAIRED MONOIDAL BIHOM-MODULES
    Ma, Tianshui
    Yang, Haiyan
    Zhang, Liangyun
    Zheng, Huihui
    COLLOQUIUM MATHEMATICUM, 2020, 161 (02) : 189 - 221
  • [42] From relative Rota-Baxter operators and relative averaging operators on Lie algebras to relative Rota-Baxter operators on Leibniz algebras: a uniform approach
    Sheng, Yunhe
    Tang, Rong
    Wagemann, Friedrich
    MATHEMATICAL RESEARCH LETTERS, 2024, 31 (05) : 1551 - 1594
  • [43] Dendriform-Nijenhuis bialgebras and DN-associative Yang-Baxter equations
    Peng, Xiao-Song
    Zhang, Yi
    Gao, Xing
    Luo, Yan-Feng
    JOURNAL OF ALGEBRA, 2021, 575 : 78 - 126
  • [44] HOPF BRACES AND YANG-BAXTER OPERATORS
    Angiono, Ivan
    Galindo, Cesar
    Vendramin, Leandro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 1981 - 1995
  • [45] Yang-Baxter operators and tensor transformations
    Wang, ZH
    ACTA MATHEMATICA SCIENTIA, 2002, 22 (03) : 427 - 432
  • [46] A Grassmann and Graded Approach to Coboundary Lie Bialgebras, their Classification, and Yang-Baxter Equations
    de Lucas, Javier
    Wysocki, Daniel
    JOURNAL OF LIE THEORY, 2020, 30 (04) : 1161 - 1194
  • [47] YANG-BAXTER OPERATORS AND TENSOR TRANSFORMATIONS
    汪振华
    Acta Mathematica Scientia, 2002, (03) : 427 - 432
  • [48] Some Results on Zinbiel Algebras and Rota-Baxter Operators
    Gao, Jizhong
    Ni, Junna
    Yu, Jianhua
    AXIOMS, 2024, 13 (05)
  • [49] Rota-Baxter Operators on Pre-Lie Superalgebras
    Abdaoui, El-Kadri
    Mabrouk, Sami
    Makhlouf, Abdenacer
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) : 1567 - 1606
  • [50] Yang-Baxter operators in symmetric categories
    Guccione, Jorge A.
    Guccione, Juan J.
    Vendramin, Leandro
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 2811 - 2845