Generalized Bell polynomials

被引:0
|
作者
Duran, Antonio J. [1 ,2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Seville 41080, Spain
[2] Univ Seville, IMUS, Seville 41080, Spain
关键词
Laguerre multiple polynomials; Bell polynomials; Zeros; Interlacing; ZEROS;
D O I
10.1016/j.jat.2024.106121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, generalized Bell polynomials ( b phi n ) n associated to a sequence of real numbers phi = ( phi i ) infinity i =1 are introduced. Bell polynomials correspond to phi i = 0, i >= 1. We prove that when phi i >= 0, i >= 1: (a) the zeros of the generalized Bell polynomial b phi n are simple, real and non positive; (b) the zeros of b phi n +1 interlace the zeros of b phi n ; (c) the zeros are decreasing functions of the parameters phi i . We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind. (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] PROBABILISTIC BIVARIATE BELL POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2025,
  • [42] The role of Bell polynomials in integration
    Collins, CB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 195 - 222
  • [43] A probabilistic generalization of the Bell polynomials
    Soni, R.
    Vellaisamy, P.
    Pathak, A. K.
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 711 - 732
  • [44] CONVOLUTION INVOLVING BELL POLYNOMIALS
    HESELDEN, GP
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 74 (JUL): : 97 - 106
  • [45] Some identities of Bell polynomials
    KIM Dae San
    KIM Taekyun
    Science China(Mathematics), 2015, 58 (10) : 2095 - 2104
  • [46] On degenerate Bell numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) : 435 - 446
  • [47] A probabilistic interpretation of the Bell polynomials
    Kataria, Kuldeep Kumar
    Vellaisamy, Palaniappan
    Kumar, Vijay
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (04) : 610 - 622
  • [48] Bell polynomials and formulae for derivatives
    Chu, Wenchang
    ANNALES POLONICI MATHEMATICI, 2019, 122 (02) : 143 - 151
  • [49] Bell gems: the Bell basis generalized
    Jaeger, G
    PHYSICS LETTERS A, 2004, 329 (06) : 425 - 429
  • [50] EXACT SOLUTIONS OF FRACTIONAL NON-LINEAR EQUATIONS BY GENERALIZED BELL POLYNOMIALS AND BILINEAR METHOD
    Liu, Mingshuo
    Zhang, Lijun
    Fang, Yong
    Dong, Huanhe
    THERMAL SCIENCE, 2021, 25 (02): : 1373 - 1380