Generalized Bell polynomials

被引:0
|
作者
Duran, Antonio J. [1 ,2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Seville 41080, Spain
[2] Univ Seville, IMUS, Seville 41080, Spain
关键词
Laguerre multiple polynomials; Bell polynomials; Zeros; Interlacing; ZEROS;
D O I
10.1016/j.jat.2024.106121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, generalized Bell polynomials ( b phi n ) n associated to a sequence of real numbers phi = ( phi i ) infinity i =1 are introduced. Bell polynomials correspond to phi i = 0, i >= 1. We prove that when phi i >= 0, i >= 1: (a) the zeros of the generalized Bell polynomial b phi n are simple, real and non positive; (b) the zeros of b phi n +1 interlace the zeros of b phi n ; (c) the zeros are decreasing functions of the parameters phi i . We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind. (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] On degenerate Bell numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 435 - 446
  • [32] De Moivre and Bell polynomials
    O'Sullivan, Cormac
    EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 870 - 893
  • [33] Some identities of Bell polynomials
    Dae San Kim
    Taekyun Kim
    Science China Mathematics, 2015, 58 : 1 - 10
  • [34] Matrices related to the Bell polynomials
    Wang, Weiping
    Wang, Tianming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 139 - 154
  • [35] SOME IDENTITIES OF BELL POLYNOMIALS
    Jang, Lee-Chae
    Kim, Taekyun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (03) : 584 - 589
  • [36] General identities on Bell polynomials
    Wang, Weiping
    Wang, Tianming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 104 - 118
  • [37] COMBINANTS, BELL POLYNOMIALS AND APPLICATIONS
    VASUDEVAN, R
    VITTAL, PR
    PARTHASARATHY, KV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05): : 989 - 1002
  • [38] Bivariate Extension of Bell Polynomials
    Zheng, Yuanping
    Li, Nadia N.
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (08)
  • [39] A probabilistic generalization of the Bell polynomials
    R. Soni
    P. Vellaisamy
    A. K. Pathak
    The Journal of Analysis, 2024, 32 (2) : 711 - 732
  • [40] Some identities of Bell polynomials
    Kim, Dae San
    Kim, Taekyun
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (10) : 2095 - 2104