Generalized Bell polynomials

被引:0
|
作者
Duran, Antonio J. [1 ,2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Seville 41080, Spain
[2] Univ Seville, IMUS, Seville 41080, Spain
关键词
Laguerre multiple polynomials; Bell polynomials; Zeros; Interlacing; ZEROS;
D O I
10.1016/j.jat.2024.106121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, generalized Bell polynomials ( b phi n ) n associated to a sequence of real numbers phi = ( phi i ) infinity i =1 are introduced. Bell polynomials correspond to phi i = 0, i >= 1. We prove that when phi i >= 0, i >= 1: (a) the zeros of the generalized Bell polynomial b phi n are simple, real and non positive; (b) the zeros of b phi n +1 interlace the zeros of b phi n ; (c) the zeros are decreasing functions of the parameters phi i . We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind. (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] An extension of the Bell polynomials
    Natalini, P
    Ricci, PE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 719 - 725
  • [22] Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [23] Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Li, Chunhui
    Zhu, Mengkun
    Wang, Dan
    Zhang, Jinyu
    Wang, Xiaoli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [24] A generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould-Quaintance formulas
    Belbachir, Hacene
    Mihoubi, Miloud
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1254 - 1256
  • [25] Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Chunhui Li
    Mengkun Zhu
    Dan Wang
    Jinyu Zhang
    Xiaoli Wang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [26] Touchard Polynomials, Partial Bell Polynomials and Polynomials of Binomial Type
    Mihoubi, Miloud
    Maamra, Mohammad Said
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (03)
  • [27] Remarks on Bell and higher order Bell polynomials and numbers
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    COGENT MATHEMATICS, 2016, 3
  • [28] The estimation of the zeros of the Bell and r-Bell polynomials
    Mezo, Istvan
    Corcino, Roberto B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 727 - 732
  • [29] On Bell based Appell polynomials
    Ozat, Zeynep
    Ozarslan, Mehmet Ali
    Cekim, Bayram
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1099 - 1128
  • [30] ARITHMETIC PROPERTIES OF BELL POLYNOMIALS
    CARLITZ, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 15 (01) : 33 - &