A probabilistic interpretation of the Bell polynomials

被引:1
|
作者
Kataria, Kuldeep Kumar [1 ]
Vellaisamy, Palaniappan [2 ]
Kumar, Vijay [2 ]
机构
[1] Indian Inst Technol Bhilai, Dept Math, Raipur, Madhya Pradesh, India
[2] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Bell polynomials; Poisson distribution of order n; probabilistic method; recurrence relations; Adomian polynomials;
D O I
10.1080/07362994.2021.1942917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a probabilistic relationship between the exponential Bell polynomials and the weighted sums of independent Poisson random variables. A recently established probabilistic connection between the Adomian polynomials and independent Poisson random variables can be derived from the obtained relationship. This result has importance because any known identity for the exponential Bell polynomials will generate a new identity for the Poisson random variables. We use the obtained relationship to derive several new identities for the joint distribution of weighted sums of independent Poisson random variables. Few examples are provided that substantiate the obtained identities.
引用
收藏
页码:610 / 622
页数:13
相关论文
共 50 条
  • [1] PROBABILISTIC BIVARIATE BELL POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2025,
  • [2] A probabilistic generalization of the Bell polynomials
    R. Soni
    P. Vellaisamy
    A. K. Pathak
    The Journal of Analysis, 2024, 32 (2) : 711 - 732
  • [3] A probabilistic generalization of the Bell polynomials
    Soni, R.
    Vellaisamy, P.
    Pathak, A. K.
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 711 - 732
  • [4] Probabilistic degenerate central Bell polynomials
    Chen, Li
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Lee, Si-Hyeon
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 523 - 542
  • [5] A PROBABILISTIC INTERPRETATION OF THE MACDONALD POLYNOMIALS
    Diaconis, Persi
    Ram, Arun
    ANNALS OF PROBABILITY, 2012, 40 (05): : 1861 - 1896
  • [6] Probabilistic Degenerate Bell Polynomials Associated with Random Variables
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (04) : 528 - 542
  • [7] Probabilistic Degenerate Bell Polynomials Associated with Random Variables
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2023, 30 : 528 - 542
  • [9] Congruences for Bell polynomials and Bell numbers
    Junod, A
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (04) : 503 - 509
  • [10] Complete and incomplete Bell polynomials associated with Lah–Bell numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Han-Young Kim
    Advances in Difference Equations, 2021