A probabilistic interpretation of the Bell polynomials

被引:1
|
作者
Kataria, Kuldeep Kumar [1 ]
Vellaisamy, Palaniappan [2 ]
Kumar, Vijay [2 ]
机构
[1] Indian Inst Technol Bhilai, Dept Math, Raipur, Madhya Pradesh, India
[2] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Bell polynomials; Poisson distribution of order n; probabilistic method; recurrence relations; Adomian polynomials;
D O I
10.1080/07362994.2021.1942917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a probabilistic relationship between the exponential Bell polynomials and the weighted sums of independent Poisson random variables. A recently established probabilistic connection between the Adomian polynomials and independent Poisson random variables can be derived from the obtained relationship. This result has importance because any known identity for the exponential Bell polynomials will generate a new identity for the Poisson random variables. We use the obtained relationship to derive several new identities for the joint distribution of weighted sums of independent Poisson random variables. Few examples are provided that substantiate the obtained identities.
引用
收藏
页码:610 / 622
页数:13
相关论文
共 50 条
  • [21] The estimation of the zeros of the Bell and r-Bell polynomials
    Mezo, Istvan
    Corcino, Roberto B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 727 - 732
  • [22] On Bell based Appell polynomials
    Ozat, Zeynep
    Ozarslan, Mehmet Ali
    Cekim, Bayram
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1099 - 1128
  • [23] ARITHMETIC PROPERTIES OF BELL POLYNOMIALS
    CARLITZ, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 15 (01) : 33 - &
  • [24] On degenerate Bell numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 435 - 446
  • [25] De Moivre and Bell polynomials
    O'Sullivan, Cormac
    EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 870 - 893
  • [26] Some identities of Bell polynomials
    Dae San Kim
    Taekyun Kim
    Science China Mathematics, 2015, 58 : 1 - 10
  • [27] Matrices related to the Bell polynomials
    Wang, Weiping
    Wang, Tianming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 139 - 154
  • [28] SOME IDENTITIES OF BELL POLYNOMIALS
    Jang, Lee-Chae
    Kim, Taekyun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (03) : 584 - 589
  • [29] General identities on Bell polynomials
    Wang, Weiping
    Wang, Tianming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 104 - 118
  • [30] COMBINANTS, BELL POLYNOMIALS AND APPLICATIONS
    VASUDEVAN, R
    VITTAL, PR
    PARTHASARATHY, KV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05): : 989 - 1002