Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers

被引:0
|
作者
Kulyabin, Mikhail [1 ]
Zhdanov, Aleksei [2 ]
Pershin, Andrey [3 ]
Sokolov, Gleb [2 ]
Nikiforova, Anastasia [4 ,5 ]
Ronkin, Mikhail [3 ]
Borisov, Vasilii [3 ]
Maier, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] VisioMed AI, Golovinskoe Highway 8-2A, Moscow 125212, Russia
[3] Ural Fed Univ Named First President Russia B N Yel, Engn Sch Informat Technol Telecommun & Control Sys, Ekaterinburg 620002, Russia
[4] Ophthalmosurgery Clin Professorskaya Plus, Vostochnaya 30, Ekaterinburg 620075, Russia
[5] Ural State Med Univ, Prevent & Family Med, Repina 3, Ekaterinburg 620028, Russia
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 09期
关键词
OCT; segmentation; SAM; MedSAM; AMD; DME; retina;
D O I
10.3390/bioengineering11090940
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Retinal Neuronal Loss in Multiple Sclerosis; Extending the Utility of Optical Coherence Tomography with Retinal Segmentation
    Saidha, Shia
    Syc, Stephanie B.
    Eckstein, Christopher
    Oakley, Jonathan D.
    Durbin, Mary K.
    Meyer, Scott A.
    Balcer, Laura J.
    Frohman, Elliot M.
    Newsome, Scott
    Ratchford, John N.
    Calabresi, Peter A.
    NEUROLOGY, 2011, 76 (09) : A446 - A447
  • [42] Retinal layer segmentation in a cohort of healthy children via optical coherence tomography
    Runge, Anna-Katharina
    Remlinger, Jana
    Abegg, Mathias
    Ferrazzini, Thomas
    Bruegger, Dominik
    Weigt-Usinger, Katharina
    Luecke, Thomas
    Gold, Ralf
    Salmen, Anke
    PLOS ONE, 2022, 17 (11):
  • [43] LOOSELY COUPLED LEVEL SETS FOR RETINAL LAYER SEGMENTATION IN OPTICAL COHERENCE TOMOGRAPHY
    Novosel, Jelena
    Vermeer, Koenraad A.
    Thepass, Gijs
    Lemij, Hans G.
    van Vliet, Lucas J.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1010 - 1013
  • [44] The potential of spectral domain optical coherence tomography imaging based retinal biomarkers
    Phadikar P.
    Saxena S.
    Ruia S.
    Lai T.Y.
    Meyer C.H.
    Eliott D.
    International Journal of Retina and Vitreous, 3 (1)
  • [45] Contrastive uncertainty based biomarkers detection in retinal optical coherence tomography images
    Liu, Xiaoming
    Zhou, Kejie
    Yao, Junping
    Wang, Man
    Zhang, Ying
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (24):
  • [46] Role of Optical Coherence Tomography in Identifying Retinal Biomarkers in Frontotemporal Dementia A Review
    Moinuddin, Omar
    Khandwala, Nikhila S.
    Young, Kelly Z.
    Sathrasala, Sanjana K.
    Barmada, Sami J.
    Albin, Roger L.
    Besirli, Cagri G.
    NEUROLOGY-CLINICAL PRACTICE, 2021, 11 (04) : E516 - E523
  • [47] Early Retinal Biomarkers of Hydroxychloroquine Toxicity on Spectral Domain Optical Coherence Tomography
    Flatter, John
    Phoebe Nguyen
    Kim, Sean Donghyun
    Liao, Jennifer
    Scott, Ingrid U.
    Sundstrom, Jeffrey M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [48] Automated retinal layer segmentation in optical coherence tomography images with intraretinal fluid
    Wang, Luquan
    Li, Xiaowen
    Chen, Yong
    Han, Dingan
    Wang, Mingyi
    Zeng, Yaguang
    Zhong, Junping
    Wang, Xuehua
    Ji, Yanhong
    Xiong, Honglian
    Wei, Xunbin
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (03)
  • [49] A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography
    Wei, Xing
    Sui, Ruifang
    SENSORS, 2023, 23 (06)
  • [50] SPARSITY-BASED RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Tokayer, Jason
    Ortega, Antonio
    Huang, David
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 449 - 452