Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers

被引:0
|
作者
Kulyabin, Mikhail [1 ]
Zhdanov, Aleksei [2 ]
Pershin, Andrey [3 ]
Sokolov, Gleb [2 ]
Nikiforova, Anastasia [4 ,5 ]
Ronkin, Mikhail [3 ]
Borisov, Vasilii [3 ]
Maier, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] VisioMed AI, Golovinskoe Highway 8-2A, Moscow 125212, Russia
[3] Ural Fed Univ Named First President Russia B N Yel, Engn Sch Informat Technol Telecommun & Control Sys, Ekaterinburg 620002, Russia
[4] Ophthalmosurgery Clin Professorskaya Plus, Vostochnaya 30, Ekaterinburg 620075, Russia
[5] Ural State Med Univ, Prevent & Family Med, Repina 3, Ekaterinburg 620028, Russia
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 09期
关键词
OCT; segmentation; SAM; MedSAM; AMD; DME; retina;
D O I
10.3390/bioengineering11090940
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Locate before Segment: Topology-guided Retinal Layer Segmentation in Optical Coherence Tomography Images
    Lu, Ye
    Shen, Yutian
    Xing, Xiaohan
    Meng, Max Q-H
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4775 - 4781
  • [12] Automated Segmentation of the Choroid in Retinal Optical Coherence Tomography Images
    Lu, Huiqi
    Boonarpha, Nattapon
    Kwong, Man Ting
    Zheng, Yalin
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5869 - 5872
  • [13] Segmentation of Retinal Lesions by Polarization Sensitive Optical Coherence Tomography
    Hitzenberger, C. K.
    Baumann, B.
    Ahlers, C.
    Schuetze, C.
    Schlanitz, F.
    Bolz, M.
    Lammer, J.
    Gotzinger, E.
    Pircher, M.
    Schmidt-Erfurth, U.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [14] Denoising and Segmentation of Retinal Layers In Optical Coherence Tomography images
    Dash, Puspita
    Sigappi, A. N.
    INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, MATERIALS AND APPLIED SCIENCE, 2018, 1952
  • [15] Validation of Optical Coherence Tomography Retinal Segmentation in Neurodegenerative Disease
    Wong, Bryan M.
    Cheng, Richard W.
    Mandelcorn, Efrem D.
    Margolin, Edward
    El-Defrawy, Sherif
    Yan, Peng
    Santiago, Anna T.
    Leontieva, Elena
    Lou, Wendy
    Hatch, Wendy
    Hudso, Christopher
    Bartha, Robert
    Black, Sandra E.
    Borrie, Michael
    Corbett, Dale
    Finger, Elizabeth
    Freedman, Morris
    Greenberg, Barry
    Grimes, David A.
    Hegele, Robert A.
    Hudson, Christopher
    Lang, Anthony E.
    Masellis, Mario
    McIlroy, William E.
    McLaughlin, Paula M.
    Montero-Odasso, Manuel
    Munoz, David G.
    Munoz, Douglas P.
    Orange, J. B.
    Strong, Michael J.
    Strother, Stephen C.
    Swartz, Richard H.
    Symons, Sean
    Tartaglia, Maria Carmela
    Troyer, Angela
    Zinman, Lorne
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2019, 8 (05):
  • [16] Needle Segmentation in Volumetric Optical Coherence Tomography Images for Ophthalmic Microsurgery
    Zhou, Mingchuan
    Roodaki, Hessam
    Eslami, Abouzar
    Chen, Guang
    Huang, Kai
    Maier, Mathias
    Lohmann, Chris P.
    Knoll, Alois
    Nasseri, Mohammad Ali
    APPLIED SCIENCES-BASEL, 2017, 7 (08):
  • [17] Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography
    Asgari, Rhona
    Orlando, Jose Ignacio
    Waldstein, Sebastian
    Schlanitz, Ferdinand
    Baratsits, Magdalena
    Schmidt-Erfurth, Ursula
    Bogunovic, Hrvoje
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 192 - 200
  • [18] MAET-SAM: Magneto-Acousto-Electrical Tomography segmentation network based on the segment anything model
    Bu, Shuaiyu
    Li, Yuanyuan
    Liu, Guoqiang
    Li, Yifan
    Mathematical Biosciences and Engineering, 2025, 22 (03) : 585 - 603
  • [19] Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets
    Zawadzki, Robert J.
    Fuller, Alfred R.
    Wiley, David F.
    Hamann, Bernd
    Choi, Stacey S.
    Werner, John S.
    JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (04)
  • [20] Thickness Profiles of Retinal Layers by Optical Coherence Tomography Image Segmentation
    Bagci, Ahmet Murat
    Shahidi, Mahnaz
    Ansari, Rashid
    Blair, Michael
    Blair, Norman Paul
    Zelkha, Ruth
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2008, 146 (05) : 679 - 687