Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers

被引:0
|
作者
Kulyabin, Mikhail [1 ]
Zhdanov, Aleksei [2 ]
Pershin, Andrey [3 ]
Sokolov, Gleb [2 ]
Nikiforova, Anastasia [4 ,5 ]
Ronkin, Mikhail [3 ]
Borisov, Vasilii [3 ]
Maier, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
[2] VisioMed AI, Golovinskoe Highway 8-2A, Moscow 125212, Russia
[3] Ural Fed Univ Named First President Russia B N Yel, Engn Sch Informat Technol Telecommun & Control Sys, Ekaterinburg 620002, Russia
[4] Ophthalmosurgery Clin Professorskaya Plus, Vostochnaya 30, Ekaterinburg 620075, Russia
[5] Ural State Med Univ, Prevent & Family Med, Repina 3, Ekaterinburg 620028, Russia
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 09期
关键词
OCT; segmentation; SAM; MedSAM; AMD; DME; retina;
D O I
10.3390/bioengineering11090940
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Fast detection and segmentation of drusen in retinal optical coherence tomography images
    Farsiu, Sina
    Chiu, Stephanie J.
    Izatt, Joseph A.
    Toth, Cynthia A.
    OPHTHALMIC TECHNOLOGIES XVIII, 2008, 6844
  • [22] A Study on Automated Segmentation of Retinal Layers in Optical Coherence Tomography Images
    Ngo, Lua
    Yih, Geown
    Ji, Seungbae
    Han, Jae-Ho
    2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,
  • [23] Intra-retinal layer segmentation in optical coherence tomography images
    Mishra, Akshaya
    Wong, Alexander
    Bizheva, Kostadinka
    Clausi, David A.
    OPTICS EXPRESS, 2009, 17 (26): : 23719 - 23728
  • [24] Segmentation of the retinal pigment epithelium by polarization sensitive optical coherence tomography
    Hitzenberger, Christoph K.
    Goetzinger, Erich
    Pircher, Michael
    Baumann, Bernhard
    Michels, Stephan
    Geitzenauer, Wolfgang
    Schmidt-Erfurth, Ursula
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE XII, 2008, 6847
  • [25] Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography
    Goetzinger, Erich
    Pircher, Michael
    Geitzenauer, Wolfgang
    Ahlers, Christian
    Baumann, Bernhard
    Michels, Stephan
    Schmidt-Erfurth, Ursula
    Hitzenberger, Christoph K.
    OPTICS EXPRESS, 2008, 16 (21) : 16410 - 16422
  • [26] Automatic segmentation of the posterior vitreous boundary in retinal optical coherence tomography
    Montuoro, Alessio
    Waldstein, Sebastian M.
    Glodan, Ana-Maria
    Podkowinski, Dominika
    Gerendas, Bianca S.
    Langs, Georg
    Simader, Christian
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [27] A Framework for the Discovery of Retinal Biomarkers in Optical Coherence Tomography Angiography (OCTA)
    Giarratano, Ylenia
    Pavel, Alisa
    Lian, Jie
    Andreeva, Rayna
    Fontanella, Alessandro
    Sarkar, Rik
    Reid, Laura J.
    Forbes, Shareen
    Pugh, Dan
    Farrah, Tariq E.
    Dhaun, Neeraj
    Dhillon, Baljean
    MacGillivray, Tom
    Bernabeu, Miguel O.
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 155 - 164
  • [28] A method for detection of retinal layers by optical coherence tomography image segmentation
    Bagci, Ahmet M.
    Ansari, Rashid
    Shahidi, Malmaz
    2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, : 144 - +
  • [29] Validation of optical coherence tomography retinal segmentation algorithm in neurodegenerative disease
    Wong, Bryan Ming-Tak
    Cheng, Richard
    Hatch, Wendy
    Mandelcorn, Efrem
    Margolin, Edward
    Yan, Peng
    Santiago, Anna Theresa
    Lou, Wendy
    Hudson, Christopher
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [30] Dense Segmentation in Selected Dimensions: Application to Retinal Optical Coherence Tomography
    Liefers, Bart
    Gonzalez-Gonzalo, Cristina
    Klaver, Caroline
    van Ginneken, Bram
    Sanchez, Clara I.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 337 - 346