SPARSITY-BASED RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES

被引:0
|
作者
Tokayer, Jason [1 ]
Ortega, Antonio [1 ]
Huang, David [2 ]
机构
[1] Univ Southern Calif, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
[2] Oregon Hlth & Sci Univ, Portland, OR 97239 USA
关键词
optical coherence tomography; segmentation; sparsity;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel method for optical coherence tomography retinal image segmentation utilizing sparsity constraints is demonstrated. Retinal images are sparse in the layer domain. The algorithm thus transforms an input retinal image into a layer-like domain, and then uses graph theory and dynamic programming to extract the retinal layers from the sparse representation. The number of identified boundaries is not fixed and is determined by the algorithm at run-time. Results show that this method can segment up to nine layer boundaries without making overly restrictive assumptions about anatomic structure.
引用
收藏
页码:449 / 452
页数:4
相关论文
共 50 条
  • [1] A SPARSITY-BASED SIMPLIFICATION METHOD FOR SEGMENTATION OF SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGES
    Meiniel, William
    Gan, Yu
    Olivo-Marin, Jean-Christophe
    Angelini, Elsa
    [J]. WAVELETS AND SPARSITY XVII, 2017, 10394
  • [2] Retinal Layer Segmentation in Optical Coherence Tomography Images
    Dodo, Bashir Isa
    Li, Yongmin
    Kaba, Djibril
    Liu, Xiaohui
    [J]. IEEE ACCESS, 2019, 7 : 152388 - 152398
  • [3] Intra-retinal layer segmentation in optical coherence tomography images
    Mishra, Akshaya
    Wong, Alexander
    Bizheva, Kostadinka
    Clausi, David A.
    [J]. OPTICS EXPRESS, 2009, 17 (26): : 23719 - 23728
  • [4] Deep Learning Based Method for Retinal Layer Segmentation In Optical Coherence Tomography Images
    Zadro, Ivana
    Loncaric, Sven
    Radmilovic, Marin
    Vatavuk, Zoran
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [5] SPARSITY-BASED SIMPLIFICATION OF SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGES OF CARDIAC SAMPLES
    Meiniel, William
    Gan, Yu
    Hendon, Christine P.
    Olivo-Marin, Jean-Christophe
    Laine, Andrew
    Angelini, Elsa D.
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 373 - 376
  • [6] Automated retinal layer segmentation in optical coherence tomography images with intraretinal fluid
    Wang, Luquan
    Li, Xiaowen
    Chen, Yong
    Han, Dingan
    Wang, Mingyi
    Zeng, Yaguang
    Zhong, Junping
    Wang, Xuehua
    Ji, Yanhong
    Xiong, Honglian
    Wei, Xunbin
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2022, 15 (03)
  • [7] Fast retinal layer segmentation of spectral domain optical coherence tomography images
    Zhang, Tianqiao
    Song, Zhangjun
    Wang, Xiaogang
    Zheng, Huimin
    Jia, Fucang
    Wu, Jianhuang
    Jia, Fucang
    Wu, Jianhuang
    Li, Guanglin
    Hu, Qingmao
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (09)
  • [8] Shortest path with backtracking based automatic layer segmentation in pathological retinal optical coherence tomography images
    Liu, Xiaoming
    Liu, Dong
    Fu, Tianyu
    Pan, Zhifang
    Hu, Wei
    Zhang, Kai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (12) : 15817 - 15838
  • [9] Shortest path with backtracking based automatic layer segmentation in pathological retinal optical coherence tomography images
    Xiaoming Liu
    Dong Liu
    Tianyu Fu
    Zhifang Pan
    Wei Hu
    Kai Zhang
    [J]. Multimedia Tools and Applications, 2019, 78 : 15817 - 15838
  • [10] Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework
    Melo, Tania
    Carneiro, Angela
    Campilho, Aurelio
    Mendonca, Ana Maria
    [J]. JOURNAL OF MEDICAL IMAGING, 2023, 10 (01)