Noncommutative Schur functions for posets

被引:0
|
作者
Blasiak, J. [1 ]
Eriksson, H. [2 ]
Pylyavskyy, P. [3 ]
Siegl, I. [4 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA USA
[3] Univ Minnesota, Dept Math, Minneapolis, MN USA
[4] Univ Washington, Dept Math, Seattle, WA USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
QUASI-SYMMETRIC FUNCTIONS; CONJECTURE; IMMANENTS; GRAPHS;
D O I
10.1007/s00029-024-01010-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The machinery of noncommutative Schur functions is a general approach to Schur positivity of symmetric functions initiated by Fomin-Greene. Hwang recently adapted this theory to posets to give a new approach to the Stanley-Stembridge conjecture. We further develop this theory to prove that the symmetric function associated to any P-Knuth equivalence graph is Schur positive. This settles a conjecture of Kim and the third author, and refines results of Gasharov, Shareshian-Wachs, and Hwang on the Schur positivity of chromatic symmetric functions.
引用
收藏
页数:56
相关论文
共 50 条
  • [31] Bottom Schur functions
    Clifford, P
    Stanley, RP
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [32] Equating Schur functions
    Morozov, A.
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (03):
  • [33] Equating Schur functions
    A. Morozov
    The European Physical Journal C, 83
  • [34] SCHUR FUNCTIONS AND GRASSMANNIANS
    LASCOUX, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (19): : 813 - 815
  • [35] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [36] MATRICES OF SCHUR FUNCTIONS
    MARCUS, M
    KATZ, SM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 170 - &
  • [37] GENERALIZED SCHUR FUNCTIONS
    MERRIS, R
    SILVA, JADD
    JOURNAL OF ALGEBRA, 1975, 35 (1-3) : 442 - 448
  • [38] Factorizations of Schur functions
    Ramlal Debnath
    Jaydeb Sarkar
    Complex Analysis and Operator Theory, 2021, 15
  • [39] Generalized Schur Functions as Multivalent Functions
    Wietsma, Hendrik Luit
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (01)
  • [40] Schur Functions and Inner Functions on the Bidisc
    Ramlal Debnath
    Jaydeb Sarkar
    Computational Methods and Function Theory, 2023, 23 : 133 - 163