Noncommutative Schur functions for posets

被引:0
|
作者
Blasiak, J. [1 ]
Eriksson, H. [2 ]
Pylyavskyy, P. [3 ]
Siegl, I. [4 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA USA
[3] Univ Minnesota, Dept Math, Minneapolis, MN USA
[4] Univ Washington, Dept Math, Seattle, WA USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
QUASI-SYMMETRIC FUNCTIONS; CONJECTURE; IMMANENTS; GRAPHS;
D O I
10.1007/s00029-024-01010-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The machinery of noncommutative Schur functions is a general approach to Schur positivity of symmetric functions initiated by Fomin-Greene. Hwang recently adapted this theory to posets to give a new approach to the Stanley-Stembridge conjecture. We further develop this theory to prove that the symmetric function associated to any P-Knuth equivalence graph is Schur positive. This settles a conjecture of Kim and the third author, and refines results of Gasharov, Shareshian-Wachs, and Hwang on the Schur positivity of chromatic symmetric functions.
引用
收藏
页数:56
相关论文
共 50 条
  • [21] REAL FUNCTIONS ON POSETS
    GINSBURG, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 479 - 479
  • [22] Equality of Schur and skew Schur functions
    van Willigenburg, Stephanie
    ANNALS OF COMBINATORICS, 2005, 9 (03) : 355 - 362
  • [23] Equality of Schur and Skew Schur Functions
    Stephanie van Willigenburg
    Annals of Combinatorics, 2005, 9 : 355 - 362
  • [24] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    Bessenrodt, C.
    van Willigenburg, S.
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 275 - 294
  • [25] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    C. Bessenrodt
    S. van Willigenburg
    Annals of Combinatorics, 2013, 17 : 275 - 294
  • [26] Noncommutative Figà-Talamanca–Herz Algebras for Schur Multipliers
    Cédric Arhancet
    Integral Equations and Operator Theory, 2011, 70 : 485 - 510
  • [27] Generalized Schur functions and augmented Schur parameters
    Dijksma, Aad
    Wanjala, Gerald
    OPERATOR THEORY IN KREIN SPACES AND NONLINEAR EIGENVALUE PROBLEMS, 2006, 162 : 135 - 144
  • [28] Factorizations of Schur functions
    Debnath, Ramlal
    Sarkar, Jaydeb
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (03)
  • [29] SCHUR FUNCTIONS AND GRASSMANNIANS
    LASCOUX, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (20): : 851 - 854
  • [30] MATRICES OF SCHUR FUNCTIONS
    MARCUS, M
    KATZ, SM
    DUKE MATHEMATICAL JOURNAL, 1969, 36 (02) : 343 - &