Noncommutative Schur functions for posets

被引:0
|
作者
Blasiak, J. [1 ]
Eriksson, H. [2 ]
Pylyavskyy, P. [3 ]
Siegl, I. [4 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA USA
[3] Univ Minnesota, Dept Math, Minneapolis, MN USA
[4] Univ Washington, Dept Math, Seattle, WA USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2025年 / 31卷 / 01期
关键词
QUASI-SYMMETRIC FUNCTIONS; CONJECTURE; IMMANENTS; GRAPHS;
D O I
10.1007/s00029-024-01010-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The machinery of noncommutative Schur functions is a general approach to Schur positivity of symmetric functions initiated by Fomin-Greene. Hwang recently adapted this theory to posets to give a new approach to the Stanley-Stembridge conjecture. We further develop this theory to prove that the symmetric function associated to any P-Knuth equivalence graph is Schur positive. This settles a conjecture of Kim and the third author, and refines results of Gasharov, Shareshian-Wachs, and Hwang on the Schur positivity of chromatic symmetric functions.
引用
收藏
页数:56
相关论文
共 50 条
  • [41] BILINEAR EXPANSION OF SCHUR FUNCTIONS IN SCHUR Q-FUNCTIONS: A FERMIONIC APPROACH
    Harnad, J.
    Orlov, A. Yu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4117 - 4131
  • [42] Noncommutative Formal Power Series and Noncommutative Functions
    Kaliuzhnyi-Verbovetskyi, Dmitry S.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3842 - 3847
  • [43] Schur Functions and Inner Functions on the Bidisc
    Debnath, Ramlal
    Sarkar, Jaydeb
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 133 - 163
  • [44] Generalized Schur Functions as Multivalent Functions
    Hendrik Luit Wietsma
    Complex Analysis and Operator Theory, 2021, 15
  • [45] The Schur algorithm and coefficient characterizations for generalized Schur functions
    Constantinescu, T
    Gheondea, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2705 - 2713
  • [46] NONCOMMUTATIVE SYMMETRICAL FUNCTIONS
    GELFAND, IM
    KROB, D
    LASCOUX, A
    LECLERC, B
    RETAKH, VS
    THIBON, JY
    ADVANCES IN MATHEMATICS, 1995, 112 (02) : 218 - 348
  • [47] Operator noncommutative functions
    Augat, Meric
    McCarthy, John E.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02): : 492 - 508
  • [48] CHARACTERIZATION OF SCHUR PARAMETER SEQUENCES OF POLYNOMIAL SCHUR FUNCTIONS
    Dubovoy, Vladimir K.
    Fritzsche, Bernd
    Kirstein, Bernd
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (04): : 289 - 310
  • [49] Noncommutative Schur functions and their applications (Reprinted from Discrete Mathematics, vol 193, pg 179-200, 1998)
    Fomin, S
    Greene, C
    DISCRETE MATHEMATICS, 2006, 306 (10-11) : 1080 - 1096
  • [50] Noncommutative continuous functions
    Hadwin, D
    Kaonga, L
    Mathes, B
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (05) : 789 - 830