Factorizations of Schur functions

被引:0
|
作者
Ramlal Debnath
Jaydeb Sarkar
机构
[1] Indian Statistical Institute,
[2] Statistics and Mathematics Unit,undefined
来源
关键词
Transfer functions; Block operator matrices; Colligation; Scattering matrices; Schur class; Schur-Agler class; Realization formulas; 32A10; 32A38; 32A70; 47A48; 47A13; 46E15; 93B15; 15.40; 15A23; 93C35; 32A38; 30H05; 47N70; 93B28; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The Schur class, denoted by S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document}, is the set of all functions analytic and bounded by one in modulus in the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} in the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}, that is S(D)=φ∈H∞(D):‖φ‖∞:=supz∈D|φ(z)|≤1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {S}}({\mathbb {D}}) = \left\{ \varphi \in H^\infty ({\mathbb {D}}): \Vert \varphi \Vert _{\infty } := \sup _{z \in {\mathbb {D}}} |\varphi (z)| \le 1\right\} . \end{aligned}$$\end{document}The elements of S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document} are called Schur functions. A classical result going back to I. Schur states: A function φ:D→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : {\mathbb {D}} \rightarrow {\mathbb {C}}$$\end{document} is in S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document} if and only if there exist a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} and an isometry (known as colligation operator matrix or scattering operator matrix) V=aBCD:C⊕H→C⊕H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} V = \begin{bmatrix} a &{}\quad B \\ C &{}\quad D \end{bmatrix} : {\mathbb {C}} \oplus {\mathcal {H}} \rightarrow {\mathbb {C}} \oplus {\mathcal {H}}, \end{aligned}$$\end{document}such that φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} admits a transfer function realization corresponding to V, that is φ(z)=a+zB(IH-zD)-1C(z∈D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varphi (z) = a + z B (I_{{\mathcal {H}}} - z D)^{-1} C \quad \quad (z \in {\mathbb {D}}). \end{aligned}$$\end{document}An analogous statement holds true for Schur functions on the bidisc. On the other hand, Schur-Agler class functions on the unit polydisc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} is a well-known “analogue” of Schur functions on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. In this paper, we present algorithms to factorize Schur functions and Schur-Agler class functions in terms of colligation matrices. More precisely, we isolate checkable conditions on colligation matrices that ensure the existence of Schur (Schur-Agler class) factors of a Schur (Schur-Agler class) function and vice versa.
引用
收藏
相关论文
共 50 条
  • [1] Factorizations of Schur functions
    Debnath, Ramlal
    Sarkar, Jaydeb
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (03)
  • [2] FACTORIZATIONS OF GENERALIZED SCHUR FUNCTIONS AND PRODUCTS OF PASSIVE SYSTEMS
    LILLEBERG, L. A. S. S. I.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2022, 28 (01): : 66 - 88
  • [3] On connection between factorizations of weighted schur functions and invariant subspaces
    Tikhonov, Alexey
    OPERATOR THEORY, ANALYSIS AND MATHEMATICAL PHYSICS, 2007, 174 : 205 - 246
  • [4] Smooth Schur factorizations in the continuation of separatrices
    Rebaza, Jorge
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) : 138 - 156
  • [5] Bijective proofs of skew Schur polynomial factorizations
    Ayyer, Arvind
    Fischer, Ilse
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 174
  • [6] On Schur inequality and Schur functions
    Radulescu, Marius
    Radulescu, Sorin
    Alexandrescu, Petrus
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2005, 32 : 214 - 220
  • [7] Skew quasisymmetric Schur functions and noncommutative Schur functions
    Bessenrodt, C.
    Luoto, K.
    van Willigenburg, S.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4492 - 4532
  • [8] Equality of Schur and skew Schur functions
    van Willigenburg, Stephanie
    ANNALS OF COMBINATORICS, 2005, 9 (03) : 355 - 362
  • [9] Equality of Schur and Skew Schur Functions
    Stephanie van Willigenburg
    Annals of Combinatorics, 2005, 9 : 355 - 362
  • [10] Characteristic functions and their factorizations
    Kapustin V.V.
    Journal of Mathematical Sciences, 2000, 101 (3) : 3088 - 3092