Factorizations of Schur functions

被引:0
|
作者
Ramlal Debnath
Jaydeb Sarkar
机构
[1] Indian Statistical Institute,
[2] Statistics and Mathematics Unit,undefined
来源
关键词
Transfer functions; Block operator matrices; Colligation; Scattering matrices; Schur class; Schur-Agler class; Realization formulas; 32A10; 32A38; 32A70; 47A48; 47A13; 46E15; 93B15; 15.40; 15A23; 93C35; 32A38; 30H05; 47N70; 93B28; 94A12;
D O I
暂无
中图分类号
学科分类号
摘要
The Schur class, denoted by S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document}, is the set of all functions analytic and bounded by one in modulus in the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} in the complex plane C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}, that is S(D)=φ∈H∞(D):‖φ‖∞:=supz∈D|φ(z)|≤1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {S}}({\mathbb {D}}) = \left\{ \varphi \in H^\infty ({\mathbb {D}}): \Vert \varphi \Vert _{\infty } := \sup _{z \in {\mathbb {D}}} |\varphi (z)| \le 1\right\} . \end{aligned}$$\end{document}The elements of S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document} are called Schur functions. A classical result going back to I. Schur states: A function φ:D→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : {\mathbb {D}} \rightarrow {\mathbb {C}}$$\end{document} is in S(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}({\mathbb {D}})$$\end{document} if and only if there exist a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} and an isometry (known as colligation operator matrix or scattering operator matrix) V=aBCD:C⊕H→C⊕H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} V = \begin{bmatrix} a &{}\quad B \\ C &{}\quad D \end{bmatrix} : {\mathbb {C}} \oplus {\mathcal {H}} \rightarrow {\mathbb {C}} \oplus {\mathcal {H}}, \end{aligned}$$\end{document}such that φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} admits a transfer function realization corresponding to V, that is φ(z)=a+zB(IH-zD)-1C(z∈D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varphi (z) = a + z B (I_{{\mathcal {H}}} - z D)^{-1} C \quad \quad (z \in {\mathbb {D}}). \end{aligned}$$\end{document}An analogous statement holds true for Schur functions on the bidisc. On the other hand, Schur-Agler class functions on the unit polydisc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} is a well-known “analogue” of Schur functions on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document}. In this paper, we present algorithms to factorize Schur functions and Schur-Agler class functions in terms of colligation matrices. More precisely, we isolate checkable conditions on colligation matrices that ensure the existence of Schur (Schur-Agler class) factors of a Schur (Schur-Agler class) function and vice versa.
引用
收藏
相关论文
共 50 条
  • [31] Universal Factorizations of Quasiperiodic Functions
    Robinson, Michael
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 588 - 592
  • [32] Elementary Functions and Factorizations of Zeons
    G. Stacey Staples
    Alexander Weygandt
    Advances in Applied Clifford Algebras, 2018, 28
  • [34] FACTORIZATIONS OF BOUNDED HOLOMORPHIC FUNCTIONS
    AHERN, PR
    RUDIN, W
    DUKE MATHEMATICAL JOURNAL, 1972, 39 (04) : 767 - 777
  • [35] FACTORIZATIONS OF TRANSFER-FUNCTIONS
    BART, H
    GOHBERG, I
    KAASHOEK, MA
    VANDOOREN, P
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (06) : 675 - 696
  • [36] Schur Functions and Inner Functions on the Bidisc
    Debnath, Ramlal
    Sarkar, Jaydeb
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (01) : 133 - 163
  • [37] Generalized Schur Functions as Multivalent Functions
    Hendrik Luit Wietsma
    Complex Analysis and Operator Theory, 2021, 15
  • [38] The Schur algorithm and coefficient characterizations for generalized Schur functions
    Constantinescu, T
    Gheondea, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2705 - 2713
  • [39] CHARACTERIZATION OF SCHUR PARAMETER SEQUENCES OF POLYNOMIAL SCHUR FUNCTIONS
    Dubovoy, Vladimir K.
    Fritzsche, Bernd
    Kirstein, Bernd
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (04): : 289 - 310
  • [40] The Schur algorithm for generalized Schur functions II: Jordan chains and transformations of characteristic functions
    Alpay, D
    Azizov, TY
    Dijksma, A
    Langer, H
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (01): : 1 - 29