Shotgun assembly of unlabeled Erdos-Renyi graphs

被引:0
|
作者
Huang, Han [1 ]
Tikhomirov, Konstantin [2 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
关键词
D O I
10.1007/s00440-024-01347-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a positive integer n, an unlabeled graph G on n vertices, and a vertex v of G, let N-G(v) be the subgraph of G induced by vertices of G of distance at most one from v. We show that there are universal constants C, c > 0 with the following property. Let the sequence (p(n))(n=1)(8) satisfy n(-1/2) log(n)(C) <= pn <= c. For each n, let Gamma(n) be an unlabeled G(n, p(n)) Erdos-Renyi graph. Then with probability 1 - o(n)(1), any unlabeled graph (Gamma) over tilde (n) on n vertices with {N (Gamma) over tilde (n) (v)}(v) = {N-Gamma n (v)}(v) must coincide with Gamma(n). This establishes (Theta) over tilde (n(-1/2)) as the transition range for the density parameter pn between reconstructability and non-reconstructability of Erdos-Renyi graphs from their 1-neighborhoods, and resolves a problem of Gaudio and Mossel from (Electron Commun Probab 27: 1-14, 2022)
引用
收藏
页数:50
相关论文
共 50 条
  • [41] Community structure and scale-free collections of Erdos-Renyi graphs
    Seshadhri, C.
    Kolda, Tamara G.
    Pinar, Ali
    PHYSICAL REVIEW E, 2012, 85 (05)
  • [42] Fluctuations of the Magnetization for Ising Models on Dense Erdos-Renyi Random Graphs
    Kabluchko, Zakhar
    Lowe, Matthias
    Schubert, Kristina
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (01) : 78 - 94
  • [43] Spectra of adjacency and Laplacian matrices of inhomogeneous Erdos-Renyi random graphs
    Chakrabarty, Arijit
    Hazra, Rajat Subhra
    den Hollander, Frank
    Sfragara, Matteo
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (01)
  • [44] Detection Threshold for Correlated Erdos-Renyi Graphs via Densest Subgraph
    Ding, Jian
    Du, Hang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5289 - 5298
  • [45] Recovering Structural Controllability on Erdos-Renyi Graphs in the Presence of Compromised Nodes
    Alwasel, Bader
    Wolthusen, Stephen D.
    CRITICAL INFORMATION INFRASTRUCTURES SECURITY, CRITIS 2015, 2016, 9578 : 105 - 119
  • [46] On the Lovasz v-number of almost regular graphs with application to Erdos-Renyi graphs
    de Klerk, E.
    Newman, M. W.
    Pasechnik, D. V.
    Sotirov, R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (04) : 879 - 888
  • [47] Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated Erdos-Renyi Graphs
    Dai, Osman Emre
    Cullina, Daniel
    Kiyavash, Negar
    Grossglauser, Matthias
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2019, 3 (02)
  • [48] SPECTRAL STATISTICS OF ERDOS-RENYI GRAPHS I: LOCAL SEMICIRCLE LAW
    Erdos, Laszlo
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    ANNALS OF PROBABILITY, 2013, 41 (3B): : 2279 - 2375
  • [49] Evolution of tag-based cooperation on Erdos-Renyi random graphs
    Lima, F. W. S.
    Hadzibeganovic, Tarik
    Stauffer, Dietrich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (06):
  • [50] LOCAL LAW AND COMPLETE EIGENVECTOR DELOCALIZATION FOR SUPERCRITICAL ERDOS-RENYI GRAPHS
    He, Yukun
    Knowles, Antti
    Marcozzi, Matteo
    ANNALS OF PROBABILITY, 2019, 47 (05): : 3278 - 3302