Shotgun assembly of unlabeled Erdos-Renyi graphs

被引:0
|
作者
Huang, Han [1 ]
Tikhomirov, Konstantin [2 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
关键词
D O I
10.1007/s00440-024-01347-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a positive integer n, an unlabeled graph G on n vertices, and a vertex v of G, let N-G(v) be the subgraph of G induced by vertices of G of distance at most one from v. We show that there are universal constants C, c > 0 with the following property. Let the sequence (p(n))(n=1)(8) satisfy n(-1/2) log(n)(C) <= pn <= c. For each n, let Gamma(n) be an unlabeled G(n, p(n)) Erdos-Renyi graph. Then with probability 1 - o(n)(1), any unlabeled graph (Gamma) over tilde (n) on n vertices with {N (Gamma) over tilde (n) (v)}(v) = {N-Gamma n (v)}(v) must coincide with Gamma(n). This establishes (Theta) over tilde (n(-1/2)) as the transition range for the density parameter pn between reconstructability and non-reconstructability of Erdos-Renyi graphs from their 1-neighborhoods, and resolves a problem of Gaudio and Mossel from (Electron Commun Probab 27: 1-14, 2022)
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Local Structure Theorems for Erdos-Renyi Graphs and Their Algorithmic Applications
    Dreier, Jan
    Kuinke, Philipp
    Xuan, Ba Le
    Rossmanith, Peter
    SOFSEM 2018: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2018, 10706 : 125 - 136
  • [32] Majority-vote on directed Erdos-Renyi random graphs
    Lima, F. W. S.
    Sousa, A. O.
    Sumuor, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3503 - 3510
  • [33] Synchronization on Erdos-Renyi networks
    Gong, BH
    Yang, L
    Yang, KQ
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [34] Eigenvalues Outside the Bulk of Inhomogeneous Erdos-Renyi Random Graphs
    Chakrabarty, Arijit
    Chakraborty, Sukrit
    Hazra, Rajat Subhra
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1746 - 1780
  • [35] Asymptotic spectral analysis of generalized Erdos-Renyi random graphs
    Liang, Song
    Obata, Nobuaki
    Takahashi, Shuji
    NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY, 2007, 78 : 211 - 229
  • [36] LACK OF HYPERBOLICITY IN ASYMPTOTIC ERDOS-RENYI SPARSE RANDOM GRAPHS
    Narayan, Onuttom
    Saniee, Iraj
    Tucci, Gabriel H.
    INTERNET MATHEMATICS, 2015, 11 (03) : 277 - 288
  • [37] Connectivity of inhomogeneous random key graphs intersecting inhomogeneous Erdos-Renyi graphs
    Eletreby, Rashad
    Yagan, Osman
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2920 - 2924
  • [38] AN ERDOS-RENYI LAW WITH SHIFTS
    ARRATIA, R
    WATERMAN, MS
    ADVANCES IN MATHEMATICS, 1985, 55 (01) : 13 - 23
  • [39] Learning Erdos-Renyi Random Graphs via Edge Detecting Queries
    Li, Zihan
    Fresacher, Matthias
    Scarlett, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [40] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399