Shotgun assembly of unlabeled Erdos-Renyi graphs

被引:0
|
作者
Huang, Han [1 ]
Tikhomirov, Konstantin [2 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
关键词
D O I
10.1007/s00440-024-01347-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a positive integer n, an unlabeled graph G on n vertices, and a vertex v of G, let N-G(v) be the subgraph of G induced by vertices of G of distance at most one from v. We show that there are universal constants C, c > 0 with the following property. Let the sequence (p(n))(n=1)(8) satisfy n(-1/2) log(n)(C) <= pn <= c. For each n, let Gamma(n) be an unlabeled G(n, p(n)) Erdos-Renyi graph. Then with probability 1 - o(n)(1), any unlabeled graph (Gamma) over tilde (n) on n vertices with {N (Gamma) over tilde (n) (v)}(v) = {N-Gamma n (v)}(v) must coincide with Gamma(n). This establishes (Theta) over tilde (n(-1/2)) as the transition range for the density parameter pn between reconstructability and non-reconstructability of Erdos-Renyi graphs from their 1-neighborhoods, and resolves a problem of Gaudio and Mossel from (Electron Commun Probab 27: 1-14, 2022)
引用
收藏
页数:50
相关论文
共 50 条
  • [21] Gambler's ruin problem on Erdos-Renyi graphs
    Neda, Zoltan
    Davidova, Larissa
    Ujvari, Szerena
    Istrate, Gabriel
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 468 : 147 - 157
  • [22] LARGEST EIGENVALUES OF SPARSE INHOMOGENEOUS ERDOS-RENYI GRAPHS
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    ANNALS OF PROBABILITY, 2019, 47 (03): : 1653 - 1676
  • [23] Seeded Graph Matching for Correlated Erdos-Renyi Graphs
    Lyzinski, Vince
    Fishkind, Donniell E.
    Priebe, Carey E.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3513 - 3540
  • [24] Concentration of the spectral norm of Erdos-Renyi random graphs
    Lugosi, Gabor
    Mendelson, Shahar
    Zhivotovskiy, Nikita
    BERNOULLI, 2020, 26 (03) : 2253 - 2274
  • [25] ERDOS-RENYI LAWS
    CSORGO, S
    ANNALS OF STATISTICS, 1979, 7 (04): : 772 - 787
  • [26] Large deviations of subgraph counts for sparse Erdos-Renyi graphs
    Cook, Nicholas
    Dembo, Amir
    ADVANCES IN MATHEMATICS, 2020, 373
  • [27] Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy
    Sealfon, Adam
    Ullman, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [28] Erdos-Renyi phase transition in the Axelrod model on complete graphs
    Pinto, Sebastian
    Balenzuela, Pablo
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [29] Upper tail of the spectral radius of sparse Erdos-Renyi graphs
    Basak, Anirban
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (3-4) : 885 - 947
  • [30] The Large Deviation Principle for Inhomogeneous Erdos-Renyi Random Graphs
    Markering, Maarten
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 711 - 727