Shotgun assembly of unlabeled Erdos-Renyi graphs

被引:0
|
作者
Huang, Han [1 ]
Tikhomirov, Konstantin [2 ]
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA USA
关键词
D O I
10.1007/s00440-024-01347-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a positive integer n, an unlabeled graph G on n vertices, and a vertex v of G, let N-G(v) be the subgraph of G induced by vertices of G of distance at most one from v. We show that there are universal constants C, c > 0 with the following property. Let the sequence (p(n))(n=1)(8) satisfy n(-1/2) log(n)(C) <= pn <= c. For each n, let Gamma(n) be an unlabeled G(n, p(n)) Erdos-Renyi graph. Then with probability 1 - o(n)(1), any unlabeled graph (Gamma) over tilde (n) on n vertices with {N (Gamma) over tilde (n) (v)}(v) = {N-Gamma n (v)}(v) must coincide with Gamma(n). This establishes (Theta) over tilde (n(-1/2)) as the transition range for the density parameter pn between reconstructability and non-reconstructability of Erdos-Renyi graphs from their 1-neighborhoods, and resolves a problem of Gaudio and Mossel from (Electron Commun Probab 27: 1-14, 2022)
引用
收藏
页数:50
相关论文
共 50 条
  • [1] Shotgun assembly of Erdos-Renyi random graphs
    Gaudio, Julia
    Mossel, Elchanan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [2] Shotgun Threshold for Sparse Erdos-Renyi Graphs
    Ding, Jian
    Jiang, Yiyang
    Ma, Heng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7373 - 7391
  • [3] Modularity of Erdos-Renyi random graphs
    McDiarmid, Colin
    Skerman, Fiona
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 211 - 243
  • [4] Super Connectivity of Erdos-Renyi Graphs
    Shang, Yilun
    MATHEMATICS, 2019, 7 (03):
  • [5] The Erdos-Renyi theory of random graphs
    Bollobás, B
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [6] Concentration of the Kirchhoff index for Erdos-Renyi graphs
    Boumal, Nicolas
    Cheng, Xiuyuan
    SYSTEMS & CONTROL LETTERS, 2014, 74 : 74 - 80
  • [7] Distribution of diameters for Erdos-Renyi random graphs
    Hartmann, A. K.
    Mezard, M.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [8] Delocalization Transition for Critical Erdos-Renyi Graphs
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 507 - 579
  • [9] EXTREMAL EIGENVALUES OF CRITICAL ERDOS-RENYI GRAPHS
    Alt, Johannes
    Ducatez, Raphael
    Knowles, Antti
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1347 - 1401
  • [10] SPECTRAL CLUSTERING FOR MULTICLASS ERDOS-RENYI GRAPHS
    Belabbas, Mohamed-Ali
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5422 - 5425