A new class of generalized Apostol-type Frobenius-Euler polynomials

被引:0
|
作者
Castilla, Letelier [1 ]
Ramirez, William [2 ,3 ]
Cesarano, Clemente [3 ]
Wani, Shahid Ahmad [4 ]
Heredia-Moyano, Maria-Fernanda [3 ]
机构
[1] IEE Normal Super Nuestra Senora Faima, Sabanagrande, Colombia
[2] Univ Costa, Dept Nat & Exact Sci, Calle 58 55-66, Barranquilla 080002, Colombia
[3] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, 39, I-00186 Rome, Italy
[4] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune Campus, Pune, India
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
the generalized Apostol Frobenius-Euler polynomials; the generalized Apostol-Euler polynomials; differential equations; recurrence relations; BERNOULLI;
D O I
10.3934/math.2025167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a new type of generalized Apostol-type Frobenius-Euler polynomials and numbers with specific order kappa and level m. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.
引用
收藏
页码:3623 / 3641
页数:19
相关论文
共 50 条
  • [41] A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Oros, Georgia Irina
    Ramriez, William
    AIMS MATHEMATICS, 2024, 9 (06): : 16297 - 16312
  • [42] Umbral Calculus and the Frobenius-Euler Polynomials
    Kim, Dae San
    Kim, Taekyun
    Lee, Sang-Hun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [43] Some new formulas for the products of the Frobenius-Euler polynomials
    Dan-Dan Su
    Yuan He
    Advances in Difference Equations, 2017
  • [44] ON GENERALIZED LAGRANGE-BASED APOSTOL-TYPE AND RELATED POLYNOMIALS
    Khan, Waseem A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2022, 46 (06): : 865 - 882
  • [45] Some Identities of the Frobenius-Euler Polynomials
    Kim, Taekyun
    Lee, Byungje
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [46] Unified degenerate Apostol-type Bernoulli, Euler, Genocchi, and Fubini polynomials
    Kurt, Burak
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 25 (03): : 259 - 268
  • [47] CERTAIN PROPERTIES OF APOSTOL-TYPE HERMITE-BASED-FROBENIUS-GENOCCHI POLYNOMIALS
    Khan, Waseem A.
    Srivastava, Divesh
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (06): : 859 - 872
  • [48] On degenerate Apostol-type polynomials and applications
    Khan, Subuhi
    Nahid, Tabinda
    Riyasat, Mumtaz
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03): : 509 - 528
  • [49] Some Explicit Formulas for the Generalized Frobenius-Euler Polynomials of Higher Order
    Belbachir, Hacene
    Souddi, Nassira
    FILOMAT, 2019, 33 (01) : 211 - 220
  • [50] A new family of Lerch-type zeta functions interpolating a certain class of higher-order Apostol-type numbers and Apostol-type polynomials
    Kucukoglu, Irem
    Simsek, Yilmaz
    Srivastava, H. M.
    QUAESTIONES MATHEMATICAE, 2019, 42 (04) : 465 - 478