Some Explicit Formulas for the Generalized Frobenius-Euler Polynomials of Higher Order

被引:2
|
作者
Belbachir, Hacene [1 ]
Souddi, Nassira [1 ,2 ]
机构
[1] USTHB, Fac Math, RECITS Lab, BP 32, Algiers 16111, Algeria
[2] Univ Oran 1 Ahmed Ben Bella, Fac Sci, BP 1524, Elm Naouer 31000, Oran, Algeria
关键词
Whitney numbers and polynomials; Bernoulli and Euler polynomials; Explicit formulas; Frobenius Euler polynomials; Recurrence relations; Stirling numbers and polynomials; algorithm; WHITNEY NUMBERS;
D O I
10.2298/FIL1901211B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim is to derive some explicit formulas for the generalized Bernoulli and Euler polynomials in terms of Whitney and translated Whitney numbers of the second kind. Also we derive some explicit formulas for the generalized Euler polynomials and Genocchi-like polynomials in terms of generalized Whitney polynomials of the second kind. We provide an algorithm for computing the generalized Frobenius-Euler polynomials of higher order.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [1] Some new formulas for the products of the Frobenius-Euler polynomials
    Su, Dan-Dan
    He, Yuan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Some new formulas for the products of the Frobenius-Euler polynomials
    Dan-Dan Su
    Yuan He
    [J]. Advances in Difference Equations, 2017
  • [3] HIGHER-ORDER BERNOULLI, FROBENIUS-EULER AND EULER POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    Seo, Jongjin
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) : 147 - 155
  • [4] Summation formulas for the products of the Frobenius-Euler polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, H. M.
    [J]. RAMANUJAN JOURNAL, 2017, 44 (01): : 177 - 195
  • [5] Some Identities of the Frobenius-Euler Polynomials
    Kim, Taekyun
    Lee, Byungje
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [6] A note on the higher-order Frobenius-Euler polynomials and Sheffer sequences
    Dae San Kim
    Taekyun Kim
    Sang-Hun Lee
    Seog-Hoon Rim
    [J]. Advances in Difference Equations, 2013
  • [7] Some convolution identities for Frobenius-Euler polynomials
    Pan, Jing
    Yang, Fengzao
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [8] A note on the higher-order Frobenius-Euler polynomials and Sheffer sequences
    Kim, Dae San
    Kim, Taekyun
    Lee, Sang-Hun
    Rim, Seog-Hoon
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [9] Some convolution identities for Frobenius-Euler polynomials
    Jing Pan
    Fengzao Yang
    [J]. Advances in Difference Equations, 2017
  • [10] SOME IDENTITIES FOR THE FROBENIUS-EULER NUMBERS AND POLYNOMIALS
    Kim, Taekyun
    Lee, Byungje
    Lee, Sang-Hun
    Rim, Seog-Hoon
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 544 - 551