A new class of generalized Apostol-type Frobenius-Euler polynomials

被引:0
|
作者
Castilla, Letelier [1 ]
Ramirez, William [2 ,3 ]
Cesarano, Clemente [3 ]
Wani, Shahid Ahmad [4 ]
Heredia-Moyano, Maria-Fernanda [3 ]
机构
[1] IEE Normal Super Nuestra Senora Faima, Sabanagrande, Colombia
[2] Univ Costa, Dept Nat & Exact Sci, Calle 58 55-66, Barranquilla 080002, Colombia
[3] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, 39, I-00186 Rome, Italy
[4] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune Campus, Pune, India
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
the generalized Apostol Frobenius-Euler polynomials; the generalized Apostol-Euler polynomials; differential equations; recurrence relations; BERNOULLI;
D O I
10.3934/math.2025167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a new type of generalized Apostol-type Frobenius-Euler polynomials and numbers with specific order kappa and level m. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.
引用
收藏
页码:3623 / 3641
页数:19
相关论文
共 50 条
  • [31] Generalized Fubini Apostol-Type Polynomials and Probabilistic Applications
    Gomaa, Rabab S.
    Magar, Alia M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [32] Some formulas for the generalized Apostol-type polynomials and numbers
    Shao, Wen-Kai
    He, Yuan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2511 - 2519
  • [33] Some new identities of Frobenius-Euler numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [34] Some new formulas for the products of the Frobenius-Euler polynomials
    Su, Dan-Dan
    He, Yuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [35] Matrix Approach to Frobenius-Euler Polynomials
    Tomaz, Graca
    Malonek, Helmuth R.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 75 - 86
  • [36] Representation by degenerate Frobenius-Euler polynomials
    Kim, Taekyun
    Kim, Dae San
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (05) : 741 - 754
  • [37] Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials
    Srivastava, H. M.
    Kucukoglu, Irem
    Simsek, Yilmaz
    JOURNAL OF NUMBER THEORY, 2017, 181 : 117 - 146
  • [38] A Unification of the Generalized Multiparameter Apostol-type Bernoulli, Euler, Fubini, and Genocchi Polynomials of Higher Order
    Acala, Nestor G.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (03): : 587 - 607
  • [39] Some new identities of Frobenius-Euler numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Journal of Inequalities and Applications, 2012
  • [40] A Family of Generalized Legendre-Based Apostol-Type Polynomials
    Usman, Talha
    Khan, Nabiullah
    Aman, Mohd
    Choi, Junesang
    AXIOMS, 2022, 11 (01)