A new class of generalized Apostol-type Frobenius-Euler polynomials

被引:0
|
作者
Castilla, Letelier [1 ]
Ramirez, William [2 ,3 ]
Cesarano, Clemente [3 ]
Wani, Shahid Ahmad [4 ]
Heredia-Moyano, Maria-Fernanda [3 ]
机构
[1] IEE Normal Super Nuestra Senora Faima, Sabanagrande, Colombia
[2] Univ Costa, Dept Nat & Exact Sci, Calle 58 55-66, Barranquilla 080002, Colombia
[3] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, 39, I-00186 Rome, Italy
[4] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune Campus, Pune, India
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
the generalized Apostol Frobenius-Euler polynomials; the generalized Apostol-Euler polynomials; differential equations; recurrence relations; BERNOULLI;
D O I
10.3934/math.2025167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a new type of generalized Apostol-type Frobenius-Euler polynomials and numbers with specific order kappa and level m. We establish fundamental identities and properties using generating function techniques, such as summation formulas, differential and integral relations, and addition theorems. Additionally, we explore the connections between these polynomials and the Stirling numbers of the second kind, as well as other polynomial families. Lastly, we derive a differential equation and a recurrence relation for these new classes of polynomials. Finally, we show applications that can be obtained using these polynomials where the graphs of the zero functions and the meshes are displayed.
引用
收藏
页码:3623 / 3641
页数:19
相关论文
共 50 条
  • [1] On the generalized Apostol-type Frobenius-Euler polynomials
    Kurt, Burak
    Simsek, Yilmaz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [2] On the generalized Apostol-type Frobenius-Euler polynomials
    Burak Kurt
    Yilmaz Simsek
    Advances in Difference Equations, 2013
  • [3] Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials
    Urieles, Alejandro
    Ramirez, William
    Ortega, Maria Jose
    Bedoya, Daniel
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] NEW CLASS OF GENERALIZED APOSTOL-TYPE FROBENIUS-EULER-HERMITE POLYNOMIALS
    Pathan, M. A.
    Khan, Waseem A.
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (03): : 477 - 499
  • [5] NEW RESULTS PARAMETRIC APOSTOL-TYPE FROBENIUS-EULER POLYNOMIALS AND THEIR MATRIX APPROACH
    Ramirez, William
    Ortega, MARiA JOSe
    Bedoya, Daniel
    Urieles, Alejandro
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (03): : 411 - 429
  • [6] Identities for Apostol-type Frobenius-Euler polynomials resulting from the study of a nonlinear operator
    Bayad, A.
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2016, 23 (02) : 164 - 171
  • [7] A New Class of Hermite-Apostol Type Frobenius-Euler Polynomials and Its Applications
    Araci, Serkan
    Riyasat, Mumtaz
    Wani, Shahid Ahmad
    Khan, Ubuhi
    SYMMETRY-BASEL, 2018, 10 (11):
  • [8] Some Properties of Generalized Apostol-Type Frobenius-Euler-Fibonacci Polynomials
    Alatawi, Maryam Salem
    Khan, Waseem Ahmad
    Kizilates, Can
    Ryoo, Cheon Seoung
    MATHEMATICS, 2024, 12 (06)
  • [9] Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials
    Alejandro Urieles
    William Ramírez
    María José Ortega
    Daniel Bedoya
    Advances in Difference Equations, 2020
  • [10] APOSTOL TYPE (p, q)-FROBENIUS-EULER POLYNOMIALS AND NUMBERS
    Duran, Ugur
    Acikgoz, Mehmet
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 555 - 567