Normalized solutions for a nonlinear Dirac equation

被引:0
|
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 50 条
  • [1] L2-Normalized Solitary Wave Solutions of a Nonlinear Dirac Equation
    Ding, Yanheng
    Yu, Yuanyang
    Zhao, Fukun
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [2] Bifurcation solutions for a nonlinear Dirac equation
    Yu, Yuanyang
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [3] The explicit solutions to the nonlinear Dirac equation and Dirac-Klein-Gordon equation
    Machihara, Shuji
    Omoso, Takayuki
    RICERCHE DI MATEMATICA, 2007, 56 (01) : 19 - 30
  • [4] Nonrelativistic limit of normalized solutions to a class of nonlinear Dirac equations
    Chen, Pan
    Ding, Yanheng
    Guo, Qi
    Wang, Hua-Yang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [5] Solutions of a nonlinear Dirac equation with external fields
    Ding, Yanheng
    Ruf, Bernhard
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 190 (01) : 57 - 82
  • [6] Solutions of a Nonlinear Dirac Equation with External Fields
    Yanheng Ding
    Bernhard Ruf
    Archive for Rational Mechanics and Analysis, 2008, 190 : 57 - 82
  • [7] PERIODIC SOLUTIONS OF THE NONLINEAR GENERALIZED DIRAC EQUATION
    KURDGELAIDZE, DF
    SOVIET PHYSICS JETP-USSR, 1958, 7 (06): : 1093 - 1096
  • [8] Normalized solutions for the nonlinear Schrodinger equation with and combined nonlinearities
    Kang, Jin-Cai
    Tang, Chun -Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [9] PERIODIC SOLUTIONS FOR NONLINEAR DIRAC EQUATION WITH SUPERQUADRATIC NONLINEARITY
    Zhang, Jian
    Zhang, Qiming
    Tang, Xianhua
    Zhang, Wen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [10] Multiple normalized solutions for a planar gauged nonlinear Schrodinger equation
    Luo, Xiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):