Dietary lecithin attenuates adverse effects of high fat diet on growth performance, lipid metabolism, endoplasmic reticulum stress and antioxidant capacity in the intestine of largemouth bass (Micropterus salmoides)

被引:1
|
作者
Zheng, Hua [1 ]
Wang, Biao [1 ,3 ]
Li, Qing-Lin [1 ]
Zhao, Tao [1 ]
Xu, Peng-Cheng [1 ]
Song, Yu-Feng [1 ]
Luo, Zhi [1 ,2 ]
机构
[1] Huazhong Agr Univ, Fishery Coll, Hubei Hongshan Lab, Wuhan 430070, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China
[3] Ctr Biotech Wuhan Co Ltd, Wuhan 430070, Peoples R China
关键词
Lecithin; High fat diet; Lipid metabolism; Intestinal health; Fish; ACID-COMPOSITION; PHOSPHOLIPIDS;
D O I
10.1016/j.aquaculture.2024.741688
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study was conducted to investigate the effects of dietary lipid and lecithin levels on growth performance, lipid metabolism, endoplasmic reticulum stress and antioxidant capacity in intestinal tissues of largemouth bass (Micropterus salmoides). Five experimental diets include the control (10.67 % lipid, normal dietary lipid without extra lecithin addition), 1.0 g/kg lecithin diet with normal dietary lipid level (Lec diet, 10.94 % lipid), high fat diet without extra lecithin addition (HFD, 18.65 % lipid), and HFD supplemented with 1.0 g/kg and 2.0 g/kg lecithin (HFD + Lec1 and HFD + Lec2 diets, respectively). Largemouth bass (initial body weight: 5.39 +/- 0.04 g/fish) were fed five diets for 10 weeks. Dietary lecithin alleviated the growth retardation and intestinal damage induced by HFD. HFD-induced increase of whole body and intestinal crude lipid contents and decline of intestinal poly-unsaturated fatty acids content were also alleviated by dietary lecithin addition. Dietary lecithin alleviated the increase of TG content, activities of lipogenic enzymes (G6PD, 6PGD, ME, ICDH and FAS), mRNA expression of lipogenic genes ( g6pd, 6pgd, fas, acc alpha, dgat1, dgat2 and srebp1) and protein expression of Srebp1, and down- regulation of mRNA expression of lipolytic gene cpt1) ) and protein expression of Ppar alpha induced by HFD. Lecithin addition mitigated the up-regulation of mRNA expression of lipid absorption genes (fabp2, fatp4, sr-1b and npc1l1), and the down-regulation of mRNA expression of chylomicron assembly- and secretion-relevant genes (mttp and acat2) and proteins (Mttp, Apob and Sar1b), chylomicron components (TG, phosphatidylcholine and apolipoprotein) and MTTP activity induced by HFD. Compared with HFD, HFD + Lec1 diet significantly decreased the mRNA expression of endoplasmic reticulum (ER) stress genes (grp94, grp78, calr, chop, ire1 alpha and xbp1) and Grp78 protein expression. Compared with HFD, the activities of antioxidant enzymes (CAT, T-SOD and GPx) and mRNA expression of genes (sod1, cat, gpx1 and nrf2) were significantly increased but MDA content and keap1 mRNA expression were significantly decreased in HFD supplemented with 1.0 g/kg and 2.0 g/kg lecithin. These results indicated that dietary lecithin supplementation increased growth rate, improved lipid metabolism, relieved ER stress, and enhanced antioxidant capacity, thereby alleviating negative effects of HFD on the function and health of intestinal tract of largemouth bass.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Effects of high α-linolenic acid transgenic rapeseed oil diet on growth performance, fat deposition, flesh quality, antioxidant capacity, and immunity of juvenile largemouth bass (Micropterus salmoides)
    Li, Rongyun
    Liu, Yunhao
    Zhang, Yunbang
    Yan, Ze
    Cao, Yun
    Li, Qingshan
    Mei, Yihui
    Sun, Shouxiang
    Cao, Xiaojuan
    Guo, Liang
    Gao, Jian
    LIPIDS, 2025, 60 (01) : 25 - 37
  • [42] Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass (Micropterus salmoides)
    He, Xuanshu
    Chen, Anqi
    Liao, Zhihong
    Zhong, Jian
    Cheng, Anda
    Xue, Xinghua
    Li, Fuyuan
    Chen, Mengdie
    Yao, Rong
    Zhao, Wei
    Niu, Jin
    AQUACULTURE NUTRITION, 2024, 2024
  • [43] The beneficial effects of metformin inclusion on growth performance, glucose utilization, antioxidant capacity and apoptosis of largemouth bass ( Micropterus salmoides) ) fed with high dietary carbohydrates
    Wang, Xiaoyuan
    Gong, Ye
    Li, Wenfei
    Liu, Ning
    Fang, Zishuo
    Zhang, Nihe
    Chen, Naisong
    Li, Songlin
    AQUACULTURE, 2024, 588
  • [44] Effects of Low or High Dosages of Dietary Sodium Butyrate on the Growth and Health of the Liver and Intestine of Largemouth Bass, Micropterus salmoides
    Ge, Yiyang
    Yao, Shibin
    Shi, Ye
    Cai, Chunfang
    Wang, Chengrui
    Wu, Ping
    Cao, Xiamin
    Ye, Yuantu
    AQUACULTURE NUTRITION, 2022, 2022
  • [45] High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides
    Yue-Lang Zhou
    Jia-Ling Guo
    Ren-Jun Tang
    Hui-Jia Ma
    Yong-Jun Chen
    Shi-Mei Lin
    Fish Physiology and Biochemistry, 2020, 46 : 125 - 134
  • [46] High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides
    Zhou, Yue-Lang
    Guo, Jia-Ling
    Tang, Ren-Jun
    Ma, Hui-Jia
    Chen, Yong-Jun
    Lin, Shi-Mei
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2020, 46 (01) : 125 - 134
  • [47] Effects of mannan oligosaccharides (MOS) on glucose and lipid metabolism of largemouth bass (Micropterus salmoides) fed with high carbohydrate diet
    Wang, Tong
    Xu, Rong
    Qiao, Fang
    Du, Zhen-Yu
    Zhang, Mei-Ling
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2022, 292
  • [48] Effects of dietary astaxanthin on growth performance, immunity, and tissue composition in largemouth bass, Micropterus salmoides
    Zhang, Jiankun
    Yang, Yeshun
    Xu, Hanying
    Li, Xinyu
    Dong, Fen
    Chen, Qiang
    Han, Tao
    Wang, Jiteng
    Wu, Chenglong
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [49] Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass (Micropterus salmoides)
    Wang, Min
    Wang, Yongfang
    Li, Xiang
    Yin, Yue
    Zhang, Xiwen
    Wu, Shuang
    Wang, Hongquan
    Zhao, Yurong
    ANIMALS, 2024, 14 (17):
  • [50] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 1043 - 1061