High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides

被引:0
|
作者
Yue-Lang Zhou
Jia-Ling Guo
Ren-Jun Tang
Hui-Jia Ma
Yong-Jun Chen
Shi-Mei Lin
机构
[1] Southwest University,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology
[2] Liangping District Agriculture Commission,undefined
来源
关键词
Lipid level; Growth; Metabolism enzyme; Antioxidant capacity;
D O I
暂无
中图分类号
学科分类号
摘要
The present study was conducted to investigate the effects of high dietary lipid levels on growth, metabolism, antioxidant capacity, and immune responses of largemouth bass. Fish (initial body weight 13.38 ± 0.11 g) were fed three isonitrogenous semi-purified diets containing 5%, 10%, and 20% lipid, respectively. The results indicated that fish fed 10% lipid diet showed significantly better final body weight, specific growth rate (SGR), protein efficiency ratio (PER), and feed conversion ratio (FCR) compared with that fed 5% lipid diet. Meanwhile, fish fed 20% lipid diet had a significantly higher viscera ratio (VR), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), and liver lipid content than those fed the other diets. Higher alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and LDL-C/HDL-C value in plasma were recorded in fish fed 20% lipid diet, while higher insulin contents were obtained in fish fed 5% lipid diet. In addition, the highest carnitine palmitoyltransferase I (CPT1), AMP-activated protein kinase (AMPK), fructose-1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver were also observed in fish fed 20% lipid diet. However, fish fed 20% lipid diet had a significantly lower superoxide dismutase (SOD) and catalase (CAT) activities and higher MDA contents in liver than those fed the other diets. The higher nitric oxide (NO) contents and inducible nitric oxide synthase (iNOS) activity in liver were recorded in fish fed 10% lipid diet. Moreover, the alkaline phosphatase (ALP), inducible nitric oxide synthase (iNOS) and lysozyme activities, and nitric oxide (NO) contents in plasma were higher in fish fed the 10% diets than the other groups. In conclusion, high dietary lipid levels could suppress growth performance and liver anti-oxidative capacity, and reduce immune responses of largemouth bass.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
  • [1] High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides
    Zhou, Yue-Lang
    Guo, Jia-Ling
    Tang, Ren-Jun
    Ma, Hui-Jia
    Chen, Yong-Jun
    Lin, Shi-Mei
    [J]. FISH PHYSIOLOGY AND BIOCHEMISTRY, 2020, 46 (01) : 125 - 134
  • [2] Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides
    Ma, Hui-Jia
    Mou, Ming-Ming
    Pu, De-Cheng
    Lin, Shi-Mei
    Chen, Yong-Jun
    Luo, Li
    [J]. AQUACULTURE, 2019, 498 : 482 - 487
  • [3] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    [J]. AQUACULTURE, 2019, 506 : 394 - 400
  • [4] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass(Micropterus salmoides)
    Mingxiao Che
    Ziye Lu
    Liang Liu
    Ning Li
    Lina Ren
    Shuyan Chi
    [J]. Animal Nutrition, 2023, (02) : 426 - 434
  • [5] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    [J]. ANIMAL NUTRITION, 2023, 13 : 426 - 434
  • [6] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    [J]. JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [7] Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides
    Lin, Shi-Mei
    Shi, Chao-Ming
    Mu, Ming-Ming
    Chen, Yong-Jun
    Luo, Li
    [J]. FISH & SHELLFISH IMMUNOLOGY, 2018, 78 : 121 - 126
  • [8] Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass, Micropterus salmoides
    Song, Ming-Qi
    Shi, Chao-Ming
    Lin, Shi-Mei
    Chen, Yong-Jun
    Shen, Huang-Mian
    Luo, Li
    [J]. AQUACULTURE, 2018, 490 : 355 - 361
  • [9] High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass,Micropterus salmoides
    Zhang, Yanmei
    Xie, Shiwei
    Wei, Hanlin
    Zheng, Lu
    Liu, Zhenlu
    Fang, Haohang
    Xie, Jiajun
    Liao, Shiyu
    Tian, Lixia
    Liu, Yongjian
    Niu, Jin
    [J]. AQUACULTURE NUTRITION, 2020, 26 (04) : 1083 - 1095
  • [10] Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Liang, Xiaofang
    Chen, Pei
    Wu, Xiaoliang
    Xing, Shujuan
    Morais, Sofia
    He, Maolong
    Gu, Xu
    Xue, Min
    [J]. ANTIOXIDANTS, 2022, 11 (03)