Dietary lecithin attenuates adverse effects of high fat diet on growth performance, lipid metabolism, endoplasmic reticulum stress and antioxidant capacity in the intestine of largemouth bass (Micropterus salmoides)

被引:1
|
作者
Zheng, Hua [1 ]
Wang, Biao [1 ,3 ]
Li, Qing-Lin [1 ]
Zhao, Tao [1 ]
Xu, Peng-Cheng [1 ]
Song, Yu-Feng [1 ]
Luo, Zhi [1 ,2 ]
机构
[1] Huazhong Agr Univ, Fishery Coll, Hubei Hongshan Lab, Wuhan 430070, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China
[3] Ctr Biotech Wuhan Co Ltd, Wuhan 430070, Peoples R China
关键词
Lecithin; High fat diet; Lipid metabolism; Intestinal health; Fish; ACID-COMPOSITION; PHOSPHOLIPIDS;
D O I
10.1016/j.aquaculture.2024.741688
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study was conducted to investigate the effects of dietary lipid and lecithin levels on growth performance, lipid metabolism, endoplasmic reticulum stress and antioxidant capacity in intestinal tissues of largemouth bass (Micropterus salmoides). Five experimental diets include the control (10.67 % lipid, normal dietary lipid without extra lecithin addition), 1.0 g/kg lecithin diet with normal dietary lipid level (Lec diet, 10.94 % lipid), high fat diet without extra lecithin addition (HFD, 18.65 % lipid), and HFD supplemented with 1.0 g/kg and 2.0 g/kg lecithin (HFD + Lec1 and HFD + Lec2 diets, respectively). Largemouth bass (initial body weight: 5.39 +/- 0.04 g/fish) were fed five diets for 10 weeks. Dietary lecithin alleviated the growth retardation and intestinal damage induced by HFD. HFD-induced increase of whole body and intestinal crude lipid contents and decline of intestinal poly-unsaturated fatty acids content were also alleviated by dietary lecithin addition. Dietary lecithin alleviated the increase of TG content, activities of lipogenic enzymes (G6PD, 6PGD, ME, ICDH and FAS), mRNA expression of lipogenic genes ( g6pd, 6pgd, fas, acc alpha, dgat1, dgat2 and srebp1) and protein expression of Srebp1, and down- regulation of mRNA expression of lipolytic gene cpt1) ) and protein expression of Ppar alpha induced by HFD. Lecithin addition mitigated the up-regulation of mRNA expression of lipid absorption genes (fabp2, fatp4, sr-1b and npc1l1), and the down-regulation of mRNA expression of chylomicron assembly- and secretion-relevant genes (mttp and acat2) and proteins (Mttp, Apob and Sar1b), chylomicron components (TG, phosphatidylcholine and apolipoprotein) and MTTP activity induced by HFD. Compared with HFD, HFD + Lec1 diet significantly decreased the mRNA expression of endoplasmic reticulum (ER) stress genes (grp94, grp78, calr, chop, ire1 alpha and xbp1) and Grp78 protein expression. Compared with HFD, the activities of antioxidant enzymes (CAT, T-SOD and GPx) and mRNA expression of genes (sod1, cat, gpx1 and nrf2) were significantly increased but MDA content and keap1 mRNA expression were significantly decreased in HFD supplemented with 1.0 g/kg and 2.0 g/kg lecithin. These results indicated that dietary lecithin supplementation increased growth rate, improved lipid metabolism, relieved ER stress, and enhanced antioxidant capacity, thereby alleviating negative effects of HFD on the function and health of intestinal tract of largemouth bass.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Inositol Inclusion Affects Growth, Body Composition, Antioxidant Performance, and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Xu, Yinglin
    Gong, Ye
    Li, Songlin
    Zhou, Yue
    Ma, Zhixiao
    Yi, Ganfeng
    Chen, Naisong
    Wang, Weilong
    Huang, Xuxiong
    AQUACULTURE NUTRITION, 2024, 2024
  • [22] Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass (Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress
    Zhao, Liulan
    Cheng, Liangshun
    Hu, Yifang
    Li, Xiaohui
    Yang, Yihui
    Mu, Jin
    Shen, Lianfeng
    Hu, Guojun
    He, Kuo
    Yan, Haoxiao
    Liu, Qiao
    Yang, Song
    ANIMAL NUTRITION, 2024, 16 : 443 - 456
  • [23] Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass(Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress
    Liulan Zhao
    Liangshun Cheng
    Yifang Hu
    Xiaohui Li
    Yihui Yang
    Jin Mu
    Lianfeng Shen
    Guojun Hu
    Kuo He
    Haoxiao Yan
    Qiao Liu
    Song Yang
    Animal Nutrition, 2024, (01) : 443 - 456
  • [24] Inactivated lactobacillus plantarum promoted growth performance, intestine health and antioxidant capacity of juvenile largemouth bass, Micropterus salmoides
    Liu, Wenkai
    Zhang, Jianmin
    Liu, Jingjing
    Wang, Xuan
    Dong, Lixue
    Gao, Xin
    Wen, Hua
    Jiang, Ming
    Meng, Xiaolin
    Tian, Juan
    AQUACULTURE REPORTS, 2024, 36
  • [25] Effects of dietary phospholipids on growth performance, fatty acid composition and lipid metabolism of early juvenile largemouth bass (Micropterus salmoides)
    Wang, Shilin
    Zhang, Yu
    Xie, Ruitao
    Zhang, Nihe
    Zhang, Haitao
    Chen, Naisong
    Li, Songlin
    AQUACULTURE RESEARCH, 2022, 53 (16) : 5628 - 5637
  • [26] Diet supplementation of organic zinc positively affects growth, antioxidant capacity, immune response and lipid metabolism in juvenile largemouth bass, Micropterus salmoides
    He, Xuanshu
    Chen, Anqi
    Liao, Zhihong
    Zhang, Yufan
    Lin, Gang
    Zhuang, Zhenxiao
    Liu, Yantao
    Wei, Hanlin
    Wang, Ziqiao
    Wang, Yingjie
    Niu, Jin
    BRITISH JOURNAL OF NUTRITION, 2023, 130 (10) : 1689 - 1703
  • [27] Optimal dietary zinc inclusion improved growth performance, serum antioxidant capacity, immune status, and liver lipid and glucose metabolism of largemouth bass (Micropterus salmoides)
    Gu, Dianchao
    Mao, Xiangjie
    Azm, Fatma Ragab Abouel
    Zhu, Wenhuan
    Huang, Tianle
    Wang, Xiaoyu
    Ni, Xinyu
    Zhou, Meng
    Shen, Jianzhong
    Tan, Qingsong
    FISH & SHELLFISH IMMUNOLOGY, 2024, 144
  • [28] Effects of dietary β-sitosterol supplementation on growth performance, antioxidant ability, and disease resistance in largemouth bass Micropterus salmoides
    Xing, Yangyang
    Zhang, Liping
    Xue, Mingyang
    Liu, Wei
    Jiang, Nan
    Li, Yiqun
    Chen, Jianwu
    Fan, Yuding
    Zhou, Yong
    Meng, Yan
    ISRAELI JOURNAL OF AQUACULTURE-BAMIDGEH, 2024, 76 (02): : 137 - 147
  • [29] Investigating Polystyrene Nano-Plastic Effects on Largemouth Bass (Micropterus salmoides) Focusing on mRNA Expression: Endoplasmic Reticulum Stress and Lipid Metabolism Dynamics
    Zhang, Kaipeng
    Chen, Jing
    Wang, Yamin
    Chen, Mingshi
    Bao, Xiaoxue
    Chen, Xiaotong
    Xie, Shan
    Lin, Zhenye
    Yu, Yingying
    FISHES, 2024, 9 (09)
  • [30] Dietary arginine levels affect growth performance, intestinal antioxidant capacity and immune responses in largemouth bass (Micropterus salmoides)
    Yu, Yayun
    Huang, Dongyu
    Zhang, Lin
    Chen, Xiaoru
    Wang, Yongli
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    AQUACULTURE REPORTS, 2023, 32