Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)

被引:42
|
作者
Li, Xinyu [1 ]
Zheng, Shixuan [2 ]
Ma, Xuekun [2 ]
Cheng, Kaimin [2 ]
Wu, Guoyao [1 ]
机构
[1] Texas A&M Univ, Dept Anim Sci, College Stn, TX 77843 USA
[2] Guangdong Yuehai Feeds Grp Co Ltd, Zhanjiang 524017, Guangdong, Peoples R China
关键词
Largemouth bassMicropterus salmoides; Protein; Lipid; Hepatosis; BODY-COMPOSITION; EPINEPHELUS-MALABARICUS; GLUTAMINE-METABOLISM; ANTIOXIDANT CAPACITY; GLUCOSE-METABOLISM; ENERGY RATIO; GROUPER; REQUIREMENT; LIPOGENESIS; SURVIVAL;
D O I
10.1007/s00726-020-02874-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The reported requirements of largemouth bass (LMB, which is native to North America) for dietary protein and lipids varied substantially among previous studies, and this fish fed current formulated diets exhibit poor growth performance and pale liver syndrome. Because amino acids and lipids are known to affect hepatic metabolism and function in mammals, it is imperative to understand the impacts of these dietary macronutrients on the growth and liver morphology of LMB. In this study, we designed six isocaloric diets to determine the effects of different dietary crude protein (CP; 40%, 45%, and 50%; dry matter basis) and lipid levels (7.5% and 10%; dry matter basis) on fat and glycogen deposits, as well as hepatosis in LMB. There were four tanks (12 fish per tank, an average initial weight of 18.4 g/fish) per dietary treatment group and the trial lasted for 8 weeks. Fish were fed to apparent satiation three times daily. Results indicated that LMB fed the 45% or 50% CP diet grew faster (P < 0.05), had less (P < 0.05) glycogen in the liver and smaller (P < 0.05) hepatocyte sizes than fish fed the 40% CP diet, but there was no difference in weight gain or feed efficiency between the 45% and 50% CP diets. The hepatic lipid content did not differ between LMB fed the 40% and 45% CP diets, and the values for these two groups were 29% lower (P < 0.05) than those for LMB fed the 50% CP diet. Compared with the 40% CP group, LMB fed the 45% or 50% CP diet had 8-12% lower content of total minerals, phosphorus, and calcium in the body. Increasing the dietary lipid level from 7.5 to 10% enhanced the weight gains (+ 15%) and feed efficiency (+ 22%), as well as the retention of dietary protein (+ 18%), energy (+ 25%), and phosphorus (+ 7.6%) in the body. No fatty liver occurred in any group of LMB (with hepatic lipid concentrations being < 2%, wet weight basis). Based on these growth, metabolic and histologic data, we recommend dietary CP and lipids levels to be 45% and 10%, respectively, for juvenile LMB.
引用
下载
收藏
页码:1043 / 1061
页数:19
相关论文
共 50 条
  • [1] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    Amino Acids, 2020, 52 : 1043 - 1061
  • [2] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 999 - 1016
  • [3] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    Amino Acids, 2020, 52 : 999 - 1016
  • [4] Dietary effects of protein and lipid levels on growth performance and flesh quality of large-size largemouth bass (Micropterus salmoides)
    Chen, Yunfeng
    Yang, Hang
    Guo, Beibei
    Li, Xiaoqin
    Leng, Xiangjun
    AQUACULTURE REPORTS, 2023, 33
  • [5] Effects of Replacement of Dietary Fishmeal by Cottonseed Protein Concentrate on Growth Performance, Liver Health, and Intestinal Histology of Largemouth Bass (Micropterus salmoides)
    Liu, Yulong
    Lu, Qisheng
    Xi, Longwei
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Zhang, Zhimin
    Liu, Haokun
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [6] Effects of High Dietary Starch Levels on the Growth Performance, Liver Function, and Metabolome of Largemouth Bass (Micropterus salmoides)
    Sun, Lihui
    Guo, Jianlin
    Li, Qian
    Jiang, Jianhu
    Chen, Jianming
    Gao, Lingmei
    Yang, Bicheng
    Peng, Jun
    FISHES, 2024, 9 (07)
  • [7] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [8] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [9] Effects of dietary phytosterol on growth, lipid homeostasis and lipidomics of largemouth bass (Micropterus salmoides)
    Jiang, Xiaoxia
    Sun, Fenggang
    Pan, Zhongchao
    Xu, Jia
    Xie, Shiwei
    AQUACULTURE REPORTS, 2024, 35
  • [10] Effects of Lysophospholipid Supplementation in Feed with Low Protein or Lipid on Growth Performance, Lipid Metabolism, and Intestinal Flora of Largemouth Bass (Micropterus salmoides)
    Lu, Ziye
    Yao, Chunfeng
    Tan, Beiping
    Dong, Xiaohui
    Yang, Qihui
    Liu, Hongyu
    Zhang, Shuang
    Chi, Shuyan
    AQUACULTURE NUTRITION, 2022, 2022