Effects of dietary phytosterol on growth, lipid homeostasis and lipidomics of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Jiang, Xiaoxia [1 ,2 ]
Sun, Fenggang [2 ]
Pan, Zhongchao [2 ]
Xu, Jia [3 ]
Xie, Shiwei [1 ,4 ,5 ]
机构
[1] Guangdong Ocean Univ, Fisheries Coll, Lab Aquat Anim Nutr & Feed, Zhanjiang, Peoples R China
[2] Guangdong Wei Lai Biotechnol Co Ltd, Guangzhou 510000, Peoples R China
[3] Guangxi Acad Marine Sci, Guangxi Acad Sci, Guangxi Key Lab Marine Environm Sci, Nanning, Peoples R China
[4] Minist Agr, Key Lab Aquat Livestock & Poultry Feed Sci & Techn, Zhanjiang, Peoples R China
[5] Aquat Anim Precis Nutr & High Efficiency Feed Engn, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Phytosterol; Lipid metabolism; Cholesterol metabolism; Lipidomics; Fish; BREAM SPARUS-AURATA; SOY SAPONINS;
D O I
10.1016/j.aqrep.2024.101959
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Little information is available on how exogenous phytosterol (PS) affect the growth performance and lipid homeostasis in fish. In the present study, an 8-week feeding trial were used to investigate the effects of PS on growth performance, serum biochemical indexes, cholesterol (CHO) metabolism and lipidomics of juvenile largemouth bass (Micropterus salmoides). The treatment diets (PS1-PS5) were formulated with supplementation of 0.01 %, 0.02 %, 0.03 %, 0.04 %, and 0.05 % PS on basis of the control diet (C, crude protein 48.39 %, crude lipid 11.65 %). Results showed that the final body weight and specific growth rate of largemouth bass increased as the levels of PS addition increased, reaching stability in the PS3 group. The concentration of high-density lipoprotein cholesterol was elevated and low-density lipoprotein cholesterol was reduced in serum were elevated following PS intervention at 0.03 %. PS treatment reduced the expression of genes associated with endogenous CHO anabolism, while increasing CHO catabolism and suppressing the corresponding negative transcriptional regulators. Lipidomics results showed that the composition patterns of lipid classes between the C and PS4 groups were similar. 7 of triglyceride (TG), 5 of phosphatidylcholine (PC), 2 of PE (phosphatidylethanolamine) and 1 of DG (diglyceride) lipid moleculars were identified as the potential lipid biomarkers in PS4 group. Furthermore, PS4 treatment enriched the pathway of 'membrane component' and 'polyunsaturated fatty acid'. In conclusion, lipid and cholesterol metabolism were altered by the PS treatment, and the appropriate PS addition level was found to be 0.03 % based on the growth performance of the largemouth bass.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 999 - 1016
  • [2] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    Amino Acids, 2020, 52 : 999 - 1016
  • [3] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [4] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    AQUACULTURE, 2019, 506 : 394 - 400
  • [5] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass(Micropterus salmoides)
    Mingxiao Che
    Ziye Lu
    Liang Liu
    Ning Li
    Lina Ren
    Shuyan Chi
    Animal Nutrition, 2023, 13 (02) : 426 - 434
  • [6] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    ANIMAL NUTRITION, 2023, 13 : 426 - 434
  • [7] Effects of dietary astaxanthin on growth performance, immunity, and tissue composition in largemouth bass, Micropterus salmoides
    Zhang, Jiankun
    Yang, Yeshun
    Xu, Hanying
    Li, Xinyu
    Dong, Fen
    Chen, Qiang
    Han, Tao
    Wang, Jiteng
    Wu, Chenglong
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [8] Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass (Micropterus salmoides)
    Wang, Min
    Wang, Yongfang
    Li, Xiang
    Yin, Yue
    Zhang, Xiwen
    Wu, Shuang
    Wang, Hongquan
    Zhao, Yurong
    ANIMALS, 2024, 14 (17):
  • [9] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 1043 - 1061
  • [10] Effects of dietary citrus pulp level on the growth and intestinal health of largemouth bass (Micropterus salmoides)
    Long, Wen
    Luo, Jiajie
    Ou, Hongdong
    Jiang, Wen
    Zhou, Hang
    Liu, Yongyin
    Zhang, Lu
    Mi, Haifeng
    Deng, Junming
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (05) : 2728 - 2743