Inequalities for Basic Special Functions Using Hölder Inequality

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Moalemi, Zahra [1 ]
Saad, Nasser [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
H & ouml; lder inequality; gamma and beta functions; Gauss and confluent hypergeometric functions; Riemann zeta function;
D O I
10.3390/math12193037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p,q >= 1 be two real numbers such that 1p+1q=1, and let a,b is an element of R be two parameters defined on the domain of a function, for example, f. Based on the well known H & ouml;lder inequality, we propose a generic inequality of the form |f(ap+bq)|<=|f(a)|1p|f(b)|1q, and show that many basic special functions, such as the gamma and polygamma functions, Riemann zeta function, beta function and Gauss and confluent hypergeometric functions, satisfy this type of inequality. In this sense, we also present some particular inequalities for the Gauss and confluent hypergeometric functions to confirm the main obtained inequalities.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Inversions of Hölder’s Inequality
    I. D. Kan
    V. A. Odnorob
    Mathematical Notes, 2021, 110 : 700 - 708
  • [12] The Hölder Inequality for KMS States
    Christian D. Jäkel
    Florian Robl
    Letters in Mathematical Physics, 2012, 102 : 265 - 274
  • [13] Refinements of Hölder’s Inequality
    G. Horváth
    Acta Mathematica Hungarica, 2014, 144 : 110 - 118
  • [14] A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder-İşcan Inequality
    Yildiz, Cetin
    Valdes, Juan E. Napoles
    Cotirla, Luminita-Ioana
    AXIOMS, 2023, 12 (10)
  • [15] Some improvements of McShane and Hölder-type inequalities via superquadratic functions
    Rani, Shumaila
    Bibi, Rabia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [16] The Weighted Fourier Inequality, Polarity, and Reverse Hölder Inequality
    Ryan Berndt
    Journal of Fourier Analysis and Applications, 2018, 24 : 1518 - 1538
  • [17] Hölder and Young Inequalities for the Trace of Operators
    Seyed Mahmoud Manjegani
    Positivity, 2007, 11 : 239 - 250
  • [18] Strengthenings of the Lyapunov, Hölder, and Minkowski Inequalities
    Petrov V.V.
    Journal of Mathematical Sciences, 2015, 206 (2) : 212 - 216
  • [19] On one complement to the Hölder inequality: I
    Ivanov B.F.
    Vestnik St. Petersburg University, Mathematics, 2017, 50 (3) : 265 - 273
  • [20] The reverse Hölder inequality for power means
    Viktor D. Didenko
    Anatolii A. Korenovskyi
    Journal of Mathematical Sciences, 2012, 183 (6) : 762 - 771