Inequalities for Basic Special Functions Using Hölder Inequality

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Moalemi, Zahra [1 ]
Saad, Nasser [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
H & ouml; lder inequality; gamma and beta functions; Gauss and confluent hypergeometric functions; Riemann zeta function;
D O I
10.3390/math12193037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p,q >= 1 be two real numbers such that 1p+1q=1, and let a,b is an element of R be two parameters defined on the domain of a function, for example, f. Based on the well known H & ouml;lder inequality, we propose a generic inequality of the form |f(ap+bq)|<=|f(a)|1p|f(b)|1q, and show that many basic special functions, such as the gamma and polygamma functions, Riemann zeta function, beta function and Gauss and confluent hypergeometric functions, satisfy this type of inequality. In this sense, we also present some particular inequalities for the Gauss and confluent hypergeometric functions to confirm the main obtained inequalities.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hölder type inequalities in Lorentz spaces
    Viktor Kolyada
    Javier Soria
    Annali di Matematica Pura ed Applicata, 2010, 189 : 523 - 538
  • [22] Extensions and demonstrations of Hölder’s inequality
    Fei Yan
    Qin Gao
    Journal of Inequalities and Applications, 2019
  • [23] Hölder Regularity of μ-Similar Functions
    Moez Ben Abid
    Stéphane Seuret
    Constructive Approximation, 2010, 31 : 69 - 93
  • [24] Oscillation of Functions in the Hölder Class
    Pavel Mozolyako
    Artur Nicolau
    Potential Analysis, 2021, 55 : 53 - 74
  • [25] INEQUALITIES FOR SPECIAL FUNCTIONS
    BORDELON, DJ
    ROSS, DK
    SIAM REVIEW, 1973, 15 (03) : 665 - 670
  • [26] Improvement of an extension of a Hölder-type inequalityУлучшенное обобщение одного неравенства типа Гёльдера
    Josip Pečarić
    Ksenija Smoljak
    Analysis Mathematica, 2012, 38 (2) : 135 - 146
  • [27] On some Hölder-type inequalities with applications
    Mustapha Raïssouli
    Rabie Zine
    Journal of Inequalities and Applications, 2015
  • [28] Matrix Hölder inequalities and numerical radius applications
    Audeh, Wasim
    Moradi, Hamid Reza
    Sababheh, Mohammad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 696 : 68 - 84
  • [29] Hölder–Łojasiewicz inequalities for volumes of tame objects
    Ta Lê Loi
    Mathematische Zeitschrift, 2021, 299 : 941 - 959
  • [30] Supplement to Hölder’s inequality. II
    Ivanov B.F.
    Vestnik St. Petersburg University, Mathematics, 2017, 50 (4) : 354 - 363