Inequalities for Basic Special Functions Using Hölder Inequality

被引:0
|
作者
Masjed-Jamei, Mohammad [1 ]
Moalemi, Zahra [1 ]
Saad, Nasser [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
H & ouml; lder inequality; gamma and beta functions; Gauss and confluent hypergeometric functions; Riemann zeta function;
D O I
10.3390/math12193037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p,q >= 1 be two real numbers such that 1p+1q=1, and let a,b is an element of R be two parameters defined on the domain of a function, for example, f. Based on the well known H & ouml;lder inequality, we propose a generic inequality of the form |f(ap+bq)|<=|f(a)|1p|f(b)|1q, and show that many basic special functions, such as the gamma and polygamma functions, Riemann zeta function, beta function and Gauss and confluent hypergeometric functions, satisfy this type of inequality. In this sense, we also present some particular inequalities for the Gauss and confluent hypergeometric functions to confirm the main obtained inequalities.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Weak Reverse Hölder Inequality for Caloric Measure
    Alyssa Genschaw
    Steve Hofmann
    The Journal of Geometric Analysis, 2020, 30 : 1530 - 1564
  • [32] MULTIDIMENSIONAL REVERSE H?LDER INEQUALITY ON TIME SCALES
    Rezk, H. M.
    ALNemer, Ghada
    Saied, Ahmed I.
    Awwad, E.
    Zakarya, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 298 - 312
  • [33] On a reverse Hölder inequality for Schrödinger operators
    Seongyeon Kim
    Ihyeok Seo
    Archiv der Mathematik, 2022, 118 : 195 - 204
  • [34] Some applications of the Hölder inequality for mixed sums
    N. Albuquerque
    T. Nogueira
    D. Núñez-Alarcón
    D. Pellegrino
    P. Rueda
    Positivity, 2017, 21 : 1575 - 1592
  • [35] Self-improvement of summability factors of functions satisfying the reverse Hölder inequality in limit cases
    A. A. Korenovskii
    V. V. Fomichev
    Ukrainian Mathematical Journal, 2010, 62 : 552 - 563
  • [36] NEW INEQUALITIES FOR SOME SPECIAL FUNCTIONS VIA THE CAUCHY-BUNIAKOVSKY-SCHWARZ INEQUALITY
    Mortici, Cristinel
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (01): : 53 - 57
  • [37] B-Potentials of Hölder Functions
    Lyakhov L.N.
    Lapshina M.G.
    Journal of Mathematical Sciences, 2016, 213 (4) : 551 - 560
  • [38] On Jensen’s inequality and Hölder’s inequality for g-expectation
    Guangyan Jia
    Archiv der Mathematik, 2010, 94 : 489 - 499
  • [39] On approximately monotone and approximately Hölder functions
    Angshuman R. Goswami
    Zsolt Páles
    Periodica Mathematica Hungarica, 2020, 81 : 65 - 87
  • [40] Generalized Hölder Continuity and Oscillation Functions
    Imre Péter Tóth
    Mathematical Physics, Analysis and Geometry, 2018, 21