On one complement to the Hölder inequality: I

被引:1
|
作者
Ivanov B.F. [1 ]
机构
[1] St. Petersburg State University of Industrial Technologies and Design, Higher School of Technology and Energy, St. Petersburg
关键词
Hölder inequality;
D O I
10.3103/S1063454117030086
中图分类号
学科分类号
摘要
Let m ≥ 2, the numbers p1,…, pm ∈ (1, +∞] satisfy the inequality 1p1+..1pm<1, and γ1 ∈ Lp1(ℝ1), …, γm ∈ Lpm(ℝ1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces Lp(ℝ1), p ∈ (1, +∞]), we have the inequality supa,b∈R1|∫ab∏k=1m[γk(τ)+Δγk(τ)]dτ|≤C∏k=1m‖γk+Δγk‖Lakpk(ℝ1), where the constant C > 0 is independent of functions Δγk∈Lakpk(ℝ1) and Lakpk(ℝ1)⊂Lpk(ℝ1), 1 ≤ k ≤ m are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ℝ1. © 2017, Allerton Press, Inc.
引用
收藏
页码:265 / 273
页数:8
相关论文
共 50 条
  • [1] Complement to Hölder’s Inequality for Multiple Integrals. II
    B. F. Ivanov
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 396 - 405
  • [2] On the Reverse Hölder inequality
    A. A. Korenovskii
    Mathematical Notes, 2007, 81 : 318 - 328
  • [3] On a generalized Hölder inequality
    Ern G Kwon
    Jung E Bae
    Journal of Inequalities and Applications, 2015
  • [4] Moment inequality and Hölder inequality for BSDEs
    Sheng-jun Fan
    Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 : 11 - 20
  • [5] Moment Inequality and Hlder Inequality for BSDEs
    Sheng-jun Fan College of School
    Acta Mathematicae Applicatae Sinica, 2009, 25 (01) : 11 - 20
  • [6] Inversions of Hölder’s Inequality
    I. D. Kan
    V. A. Odnorob
    Mathematical Notes, 2021, 110 : 700 - 708
  • [7] The Hölder Inequality for KMS States
    Christian D. Jäkel
    Florian Robl
    Letters in Mathematical Physics, 2012, 102 : 265 - 274
  • [8] Refinements of Hölder’s Inequality
    G. Horváth
    Acta Mathematica Hungarica, 2014, 144 : 110 - 118
  • [9] The Weighted Fourier Inequality, Polarity, and Reverse Hölder Inequality
    Ryan Berndt
    Journal of Fourier Analysis and Applications, 2018, 24 : 1518 - 1538
  • [10] The reverse Hölder inequality for power means
    Viktor D. Didenko
    Anatolii A. Korenovskyi
    Journal of Mathematical Sciences, 2012, 183 (6) : 762 - 771