Proper central exponent of superalgebras with graded involution or superinvolution

被引:0
|
作者
La Mattina, D. [1 ]
dos Santos, R. B. [2 ]
Vieira, A. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Fed Minas Gerais, Dept Matemat, Inst Ciencias Exatas, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, Brazil
关键词
central polynomial; Superinvolution; Graded involution; Exponent; POLYNOMIAL-IDENTITIES; ALGEBRAS; GROWTH; CONJECTURE;
D O I
10.1007/s00209-025-03689-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1984, Regev started the quantitative study of the space of central polynomials by computing the exponential rate of growth of central polynomials of matrix algebras. More generally, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}, one considers the dimension cn delta(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_n<^>{\delta }(A)$$\end{document} of the space of multilinear central polynomials of degree n modulo the polynomial identities of an algebra A. In 2018, Giambruno and Zaicev proved the limit limn ->infinity cn delta(A)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \limits _{n \rightarrow \infty }\root n \of {c_n<^>{\delta }(A)}$$\end{document} exists and it is an integer. In this paper we consider such a situation for superalgebras endowed with a superinvolution or a graded involution and present the existence of the corresponding limit.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] ON THE STRUCTURE OF GRADED LIE SUPERALGEBRAS
    Calderon Martin, Antonio J.
    Sanchez Delgado, Jose M.
    MODERN PHYSICS LETTERS A, 2012, 27 (25)
  • [32] Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras
    Kang, SJ
    Kwon, JH
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 : 675 - 724
  • [33] Superalgebras and algebras with involution: classifying varieties of quadratic growth
    Bessades, D. C. L.
    dos Santos, R. B.
    Santos, M. L. O.
    Vieira, A. C.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2476 - 2490
  • [34] On some Montgomery's results on algebras with involution in superalgebras
    Laliena, Jesus
    Rizzo, Roberto
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [35] On Naturally Graded Lie and Leibniz Superalgebras
    L. M. Camacho
    R. M. Navarro
    J. M. Sánchez
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3411 - 3435
  • [36] A(n,n)-graded Lie superalgebras
    Benkart, G
    Elduque, A
    Martínez, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 573 : 139 - 156
  • [37] Fractal nil graded Lie superalgebras
    Petrogradsky, Victor
    JOURNAL OF ALGEBRA, 2016, 466 : 229 - 283
  • [38] Graded Morita Equivalence of Clifford Superalgebras
    Zhao, Deke
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 269 - 281
  • [39] Graded Morita Equivalence of Clifford Superalgebras
    Deke Zhao
    Advances in Applied Clifford Algebras, 2013, 23 : 269 - 281
  • [40] Graded Lie superalgebras and the superdimension formula
    Kang, SJ
    JOURNAL OF ALGEBRA, 1998, 204 (02) : 597 - 655