Proper central exponent of superalgebras with graded involution or superinvolution

被引:0
|
作者
La Mattina, D. [1 ]
dos Santos, R. B. [2 ]
Vieira, A. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Fed Minas Gerais, Dept Matemat, Inst Ciencias Exatas, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, Brazil
关键词
central polynomial; Superinvolution; Graded involution; Exponent; POLYNOMIAL-IDENTITIES; ALGEBRAS; GROWTH; CONJECTURE;
D O I
10.1007/s00209-025-03689-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1984, Regev started the quantitative study of the space of central polynomials by computing the exponential rate of growth of central polynomials of matrix algebras. More generally, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}, one considers the dimension cn delta(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_n<^>{\delta }(A)$$\end{document} of the space of multilinear central polynomials of degree n modulo the polynomial identities of an algebra A. In 2018, Giambruno and Zaicev proved the limit limn ->infinity cn delta(A)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \limits _{n \rightarrow \infty }\root n \of {c_n<^>{\delta }(A)}$$\end{document} exists and it is an integer. In this paper we consider such a situation for superalgebras endowed with a superinvolution or a graded involution and present the existence of the corresponding limit.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] On Naturally Graded Lie and Leibniz Superalgebras
    Camacho, L. M.
    Navarro, R. M.
    Sanchez, J. M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3411 - 3435
  • [42] Holomorphic integer graded vertex superalgebras
    van Ekeren, Jethro
    Morales, Bely Rodriguez
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [43] On existence of PI-exponent of algebras with involution
    Repovs, Dusan D.
    Zaicev, Mikhail, V
    JOURNAL OF ALGEBRA, 2023, 614 : 5 - 19
  • [44] Unitarity and Strong Graded Locality of Holomorphic Vertex Operator Superalgebras with Central Charge at Most 24
    Gaudio, Tiziano
    ANNALES HENRI POINCARE, 2025,
  • [45] Semigroup graded algebras and graded PI-exponent
    Gordienko, Alexey
    Janssens, Geoffrey
    Jespers, Eric
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 387 - 452
  • [46] Graded Brauer groups of a groupoid with involution
    Moutuou, El-kaioum M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2689 - 2739
  • [47] Semigroup graded algebras and graded PI-exponent
    Alexey Gordienko
    Geoffrey Janssens
    Eric Jespers
    Israel Journal of Mathematics, 2017, 220 : 387 - 452
  • [48] Graded Identities of Some Simple Lie Superalgebras
    Dušan Repovš
    Mikhail Zaicev
    Algebras and Representation Theory, 2014, 17 : 1401 - 1412
  • [49] Some Graded Bialgebras Related to Borcherds Superalgebras
    Wu, Zhixiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1220 - 1244
  • [50] Graded simple Jordan superalgebras of growth one
    Kac, VG
    Martinez, C
    Zelmanov, E
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 150 (711) : 1 - +