Proper central exponent of superalgebras with graded involution or superinvolution

被引:0
|
作者
La Mattina, D. [1 ]
dos Santos, R. B. [2 ]
Vieira, A. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Fed Minas Gerais, Dept Matemat, Inst Ciencias Exatas, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, Brazil
关键词
central polynomial; Superinvolution; Graded involution; Exponent; POLYNOMIAL-IDENTITIES; ALGEBRAS; GROWTH; CONJECTURE;
D O I
10.1007/s00209-025-03689-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1984, Regev started the quantitative study of the space of central polynomials by computing the exponential rate of growth of central polynomials of matrix algebras. More generally, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}, one considers the dimension cn delta(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_n<^>{\delta }(A)$$\end{document} of the space of multilinear central polynomials of degree n modulo the polynomial identities of an algebra A. In 2018, Giambruno and Zaicev proved the limit limn ->infinity cn delta(A)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \limits _{n \rightarrow \infty }\root n \of {c_n<^>{\delta }(A)}$$\end{document} exists and it is an integer. In this paper we consider such a situation for superalgebras endowed with a superinvolution or a graded involution and present the existence of the corresponding limit.
引用
收藏
页数:16
相关论文
共 50 条