central polynomial;
Superinvolution;
Graded involution;
Exponent;
POLYNOMIAL-IDENTITIES;
ALGEBRAS;
GROWTH;
CONJECTURE;
D O I:
10.1007/s00209-025-03689-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In 1984, Regev started the quantitative study of the space of central polynomials by computing the exponential rate of growth of central polynomials of matrix algebras. More generally, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}, one considers the dimension cn delta(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_n<^>{\delta }(A)$$\end{document} of the space of multilinear central polynomials of degree n modulo the polynomial identities of an algebra A. In 2018, Giambruno and Zaicev proved the limit limn ->infinity cn delta(A)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \limits _{n \rightarrow \infty }\root n \of {c_n<^>{\delta }(A)}$$\end{document} exists and it is an integer. In this paper we consider such a situation for superalgebras endowed with a superinvolution or a graded involution and present the existence of the corresponding limit.
机构:
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, BrazilUniv Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, Brazil
Cruz, J. P.
Vieira, A. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, BrazilUniv Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, Brazil
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20126 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20126 Milan, Italy