Graded Morita Equivalence of Clifford Superalgebras

被引:1
|
作者
Zhao, Deke [1 ]
机构
[1] Beijing Normal Univ, Sch Appl Math, Zhuhai 519087, Peoples R China
关键词
Clifford superalgebras; graded Morita equivalence; graded basic superalgebras; ALGEBRAS; RINGS;
D O I
10.1007/s00006-012-0340-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note uses a variation of graded Morita theory for finite dimensional superalgebras to determine explicitly the graded basic superalgebras for all real and complex Clifford superalgebras. As an application, the Grothendieck groups of the category of left -graded modules over all real and complex Clifford superalgebras are described explicitly.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [1] Graded Morita Equivalence of Clifford Superalgebras
    Deke Zhao
    Advances in Applied Clifford Algebras, 2013, 23 : 269 - 281
  • [2] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [3] Recasting the Hazrat Conjecture: Relating Shift Equivalence to Graded Morita Equivalence
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (02) : 1477 - 1511
  • [4] Generalized Weyl algebras: Category O and graded Morita equivalence
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2010, 323 (09) : 2449 - 2468
  • [5] MORITA EQUIVALENCE
    Barrett, Thomas William
    Halvorson, Hans
    REVIEW OF SYMBOLIC LOGIC, 2016, 9 (03): : 556 - 582
  • [6] CLIFFORD ALGEBRAS AS SUPERALGEBRAS AND QUANTIZATION
    LEITES, DA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 58 (02) : 150 - 152
  • [7] ON THE MORITA INVARIANCE OF THE HOCHSCHILD HOMOLOGY OF SUPERALGEBRAS
    Blaga, Paul A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 41 - 48
  • [8] Monoidal Morita equivalence
    Szlachányi, K
    Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 353 - 369
  • [9] Morita equivalence of sketches
    Adámek, J
    Borceux, F
    APPLIED CATEGORICAL STRUCTURES, 2000, 8 (03) : 503 - 517
  • [10] Comments on the Morita equivalence
    Saraikin, K
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (04) : 653 - 657