Deep learning surrogate for predicting hydraulic conductivity tensors from stochastic discrete fracture-matrix models

被引:0
|
作者
Spetlik, Martin [1 ]
Brezina, Jan [1 ]
Laloy, Eric [2 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
[2] Belgian Nucl Res Ctr SCK CEN, Engn & Geosyst Anal Unit, Sustainable Waste Management & Decommissioning, Boeretang 200, B-2400 Mol, Belgium
关键词
Deep learning surrogate; 2D DFM models; Numerical homogenization; Equivalent hydraulic conductivity tensor; PERMEABILITY TENSORS; FLOW; NETWORK; ROCK;
D O I
10.1007/s10596-024-10324-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulating water flow in fractured crystalline rock requires tackling its stochastic nature. We aim to utilize the multilevel Monte Carlo method for cost-effective estimation of simulation statistics. This multiscale approach entails upscaling of fracture hydraulic conductivity by homogenization. In this work, we replace 2D numerical homogenization based on the discrete fracture-matrix (DFM) approach with a surrogate model to expedite computations. We employ a deep convolutional neural network (CNN) connected to a deep feed-forward neural network as the surrogate. The equivalent hydraulic conductivity tensor Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} is predicted based on the input tensorial spatial random fields (SRFs) of hydraulic conductivities, along with the cross-section and hydraulic conductivity of fractures. Three independent surrogates with the same architecture are trained, each with a different ratio of fracture-to-matrix hydraulic conductivity Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. As the ratio Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document} increases, the distribution of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} becomes more complex, leading to a decline in the prediction accuracy of the surrogates. The prediction accuracy improves as the fracture density decreases, regardless of the Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. We also investigate prediction accuracy for different correlation lengths of input SRFs. The observed speedup gained by surrogates varies from 4x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4}\varvec{\times }$$\end{document} to 28x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{28}\varvec{\times }$$\end{document} depending on the number of homogenization blocks. Upscaling by numerical homogenization and surrogate modeling is compared on two macroscale problems. For the first one, the accuracy of outcomes is directly correlated with the accuracy of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} predictions. For the latter one, we observe only a mild impact of the upscaling method on the accuracy of the results.
引用
收藏
页码:1425 / 1440
页数:16
相关论文
共 43 条
  • [31] Predicting Future Incidences of Cardiac Arrhythmias Using Discrete Heartbeats from Normal Sinus Rhythm ECG Signals via Deep Learning Methods
    Kim, Yehyun
    Lee, Myeonggyu
    Yoon, Jaeung
    Kim, Yeji
    Min, Hyunseok
    Cho, Hyungjoo
    Park, Junbeom
    Shin, Taeyoung
    DIAGNOSTICS, 2023, 13 (17)
  • [32] Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning
    Nissinen, Tomi
    Suoranta, Sanna
    Saavalainen, Taavi
    Sund, Reijo
    Hurskainen, Ossi
    Rikkonen, Toni
    Kroger, Heikki
    Lahivaara, Timo
    Vaananen, Sami P.
    BONE REPORTS, 2021, 14
  • [33] Deep learning phase pickers: how well can existing models detect hydraulic-fracturing induced microseismicity from a borehole array?
    Lim, Cindy S. Y.
    Lapins, Sacha
    Segou, Margarita
    Werner, Maximilian J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 240 (01) : 535 - 549
  • [34] Investigating hybrid deep learning models and meta-heuristic algorithms in predicting evaporation from a reservoir: a case study of Dez dam
    Reza Farzad
    Farshad Ahmadi
    Ahmad Sharafati
    Seyed Abbas Hosseini
    Earth Science Informatics, 2023, 16 : 3597 - 3618
  • [35] Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI
    Garcia-Gutierrez, Fernando
    Hernandez-Lorenzo, Laura
    Cabrera-Martin, Maria Nieves
    Matias-Guiu, Jordi A.
    Ayala, Jose L.
    NEUROIMAGE, 2024, 297
  • [36] Investigating hybrid deep learning models and meta-heuristic algorithms in predicting evaporation from a reservoir: a case study of Dez dam
    Farzad, Reza
    Ahmadi, Farshad
    Sharafati, Ahmad
    Hosseini, Seyed Abbas
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3597 - 3618
  • [37] HydRA: Deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence
    Jin, Wenhao
    Brannan, Kristopher W.
    Kapeli, Katannya
    Park, Samuel S.
    Tan, Hui Qing
    Gosztyla, Maya L.
    Mujumdar, Mayuresh
    Ahdout, Joshua
    Henroid, Bryce
    Rothamel, Katherine
    Xiang, Joy S.
    Wong, Limsoon
    Yeo, Gene W.
    MOLECULAR CELL, 2023, 83 (14) : 2595 - +
  • [38] Predicting India's CO2 Emissions from Vehicles in the Next 20 Years: A Comparative Study of Statistical and Deep Learning Models
    Vani Pujitha M.
    Kiran K.V.D.
    Int. J. Veh. Struct. Syst., 2 (204-210): : 204 - 210
  • [40] Predicting vital sign deviations during surgery from patient monitoring data: developing and validating single-stream deep learning models
    Dubatovka, Alina
    Nothiger, Christoph B.
    Spahn, Donat R.
    Buhmann, Joachim M.
    Roche, Tadzio R.
    Tscholl, David W.
    BRITISH JOURNAL OF ANAESTHESIA, 2024, 133 (04) : 889 - 892