Deep learning surrogate for predicting hydraulic conductivity tensors from stochastic discrete fracture-matrix models

被引:0
|
作者
Spetlik, Martin [1 ]
Brezina, Jan [1 ]
Laloy, Eric [2 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
[2] Belgian Nucl Res Ctr SCK CEN, Engn & Geosyst Anal Unit, Sustainable Waste Management & Decommissioning, Boeretang 200, B-2400 Mol, Belgium
关键词
Deep learning surrogate; 2D DFM models; Numerical homogenization; Equivalent hydraulic conductivity tensor; PERMEABILITY TENSORS; FLOW; NETWORK; ROCK;
D O I
10.1007/s10596-024-10324-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulating water flow in fractured crystalline rock requires tackling its stochastic nature. We aim to utilize the multilevel Monte Carlo method for cost-effective estimation of simulation statistics. This multiscale approach entails upscaling of fracture hydraulic conductivity by homogenization. In this work, we replace 2D numerical homogenization based on the discrete fracture-matrix (DFM) approach with a surrogate model to expedite computations. We employ a deep convolutional neural network (CNN) connected to a deep feed-forward neural network as the surrogate. The equivalent hydraulic conductivity tensor Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} is predicted based on the input tensorial spatial random fields (SRFs) of hydraulic conductivities, along with the cross-section and hydraulic conductivity of fractures. Three independent surrogates with the same architecture are trained, each with a different ratio of fracture-to-matrix hydraulic conductivity Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. As the ratio Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document} increases, the distribution of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} becomes more complex, leading to a decline in the prediction accuracy of the surrogates. The prediction accuracy improves as the fracture density decreases, regardless of the Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. We also investigate prediction accuracy for different correlation lengths of input SRFs. The observed speedup gained by surrogates varies from 4x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4}\varvec{\times }$$\end{document} to 28x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{28}\varvec{\times }$$\end{document} depending on the number of homogenization blocks. Upscaling by numerical homogenization and surrogate modeling is compared on two macroscale problems. For the first one, the accuracy of outcomes is directly correlated with the accuracy of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} predictions. For the latter one, we observe only a mild impact of the upscaling method on the accuracy of the results.
引用
收藏
页码:1425 / 1440
页数:16
相关论文
共 43 条
  • [21] Predicting academic performance of students from VLE big data using deep learning models
    Waheed, Hajra
    Hassan, Saeed-Ul
    Aljohani, Naif Radi
    Hardman, Julie
    Alelyani, Salem
    Nawaz, Raheel
    COMPUTERS IN HUMAN BEHAVIOR, 2020, 104
  • [22] An optimum solution for coal permeability estimation from mesoscopic scale calibrated stochastic and deterministic discrete fracture network models
    Bandyopadhyay, Krishanu
    Mallik, Jyotirmoy
    FUEL, 2023, 331
  • [23] Comparison between conventional and deep learning-based surrogate models in predicting convective heat transfer performance of U-bend channels
    Wang, Qi
    Zhou, Weiwei
    Yang, Li
    Huang, Kang
    ENERGY AND AI, 2022, 8
  • [24] Predicting the unsaturated hydraulic conductivity of granular soils from basic geotechnical properties using the modified Kovacs (MK) model and statistical models
    Mbonimpa, M.
    Aubertin, M.
    Bussiere, B.
    CANADIAN GEOTECHNICAL JOURNAL, 2006, 43 (08) : 773 - 787
  • [25] Integrated Deep Learning and Stochastic Models for Accurate Segmentation of Lung Nodules From Computed Tomography Images: A Novel Framework
    Youssef, Bassant E.
    Alksas, Ahmed
    Shalaby, Ahmed
    Mahmoud, Ali H.
    Van Bogaert, Eric
    Alghamdi, Norah Saleh
    Neubacher, Alyssa
    Contractor, Sohail
    Ghazal, Mohammed
    Elmaghraby, Adel S.
    El-Baz, Ayman
    IEEE ACCESS, 2023, 11 : 99807 - 99821
  • [26] Deep Learning Models for Predicting Left Heart Abnormalities From Single-Lead Electrocardiogram for the Development of Wearable Devices
    Sato, Masataka
    Kodera, Satoshi
    Setoguchi, Naoto
    Tanabe, Kengo
    Kushida, Shunichi
    Kanda, Junji
    Saji, Mike
    Nanasato, Mamoru
    Maki, Hisataka
    Fujita, Hideo
    Kato, Nahoko
    Watanabe, Hiroyuki
    Suzuki, Minami
    Takahashi, Masao
    Sawada, Naoko
    Yamasaki, Masao
    Sawano, Shinnosuke
    Katsushika, Susumu
    Shinohara, Hiroki
    Takeda, Norifumi
    Fujiu, Katsuhito
    Daimon, Masao
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    CIRCULATION JOURNAL, 2024, 88 (01) : 146 - +
  • [27] DeepCt: Predicting Pharmacokinetic Concentration-Time Curves and Compartmental Models from Chemical Structure Using Deep Learning
    Beckers, Maximilian
    Yonchev, Dimitar
    Desrayaud, Sandrine
    Gerebtzoff, Gregori
    Rodriguez-Perez, Raquel
    MOLECULAR PHARMACEUTICS, 2024, 21 (12) : 6220 - 6233
  • [28] Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors
    Wu, I-En
    Kalejaye, Lateefat
    Lai, Pin-Kuang
    MOLECULAR PHARMACEUTICS, 2024, 22 (01) : 142 - 153
  • [29] Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models
    Hong, Runyu
    Liu, Wenke
    DeLair, Deborah
    Razavian, Narges
    Fenyo, David
    CELL REPORTS MEDICINE, 2021, 2 (09)
  • [30] EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models
    Gu, Xiaotong
    Myung, Yoochan
    Rodrigues, Carlos H. M.
    Ascher, David B.
    PROTEIN SCIENCE, 2024, 33 (08)