Deep learning surrogate for predicting hydraulic conductivity tensors from stochastic discrete fracture-matrix models

被引:0
|
作者
Spetlik, Martin [1 ]
Brezina, Jan [1 ]
Laloy, Eric [2 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
[2] Belgian Nucl Res Ctr SCK CEN, Engn & Geosyst Anal Unit, Sustainable Waste Management & Decommissioning, Boeretang 200, B-2400 Mol, Belgium
关键词
Deep learning surrogate; 2D DFM models; Numerical homogenization; Equivalent hydraulic conductivity tensor; PERMEABILITY TENSORS; FLOW; NETWORK; ROCK;
D O I
10.1007/s10596-024-10324-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulating water flow in fractured crystalline rock requires tackling its stochastic nature. We aim to utilize the multilevel Monte Carlo method for cost-effective estimation of simulation statistics. This multiscale approach entails upscaling of fracture hydraulic conductivity by homogenization. In this work, we replace 2D numerical homogenization based on the discrete fracture-matrix (DFM) approach with a surrogate model to expedite computations. We employ a deep convolutional neural network (CNN) connected to a deep feed-forward neural network as the surrogate. The equivalent hydraulic conductivity tensor Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} is predicted based on the input tensorial spatial random fields (SRFs) of hydraulic conductivities, along with the cross-section and hydraulic conductivity of fractures. Three independent surrogates with the same architecture are trained, each with a different ratio of fracture-to-matrix hydraulic conductivity Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. As the ratio Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document} increases, the distribution of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} becomes more complex, leading to a decline in the prediction accuracy of the surrogates. The prediction accuracy improves as the fracture density decreases, regardless of the Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. We also investigate prediction accuracy for different correlation lengths of input SRFs. The observed speedup gained by surrogates varies from 4x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4}\varvec{\times }$$\end{document} to 28x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{28}\varvec{\times }$$\end{document} depending on the number of homogenization blocks. Upscaling by numerical homogenization and surrogate modeling is compared on two macroscale problems. For the first one, the accuracy of outcomes is directly correlated with the accuracy of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} predictions. For the latter one, we observe only a mild impact of the upscaling method on the accuracy of the results.
引用
收藏
页码:1425 / 1440
页数:16
相关论文
共 43 条
  • [41] Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states
    Murphy, Alan E.
    Askarova, Aydan
    Lenhard, Boris
    Skene, Nathan G.
    Marzi, Sarah J.
    NUCLEIC ACIDS RESEARCH, 2024,
  • [42] Computer-aided many-objective optimization framework via deep learning surrogate models: Promoting carbon reduction in refining processes from a life cycle perspective
    Zhou, Xin
    Zhang, Zhibo
    Shi, Huibing
    Zhao, Deming
    Wang, Yaowei
    Luo, Haiyan
    Yan, Hao
    Zhang, Weitao
    Wu, Lianying
    Yang, Chaohe
    CHEMICAL ENGINEERING SCIENCE, 2025, 307
  • [43] Optimizing Deep Learning Models: CNN-RNN Augmentation with Grad-CAM Analysis for Predicting Pneumonitis from Pre-Treatment CT Images
    Zou, Z.
    Teo, P. T.
    Yalamanchili, A.
    Abazeed, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E670 - E670