Simulating water flow in fractured crystalline rock requires tackling its stochastic nature. We aim to utilize the multilevel Monte Carlo method for cost-effective estimation of simulation statistics. This multiscale approach entails upscaling of fracture hydraulic conductivity by homogenization. In this work, we replace 2D numerical homogenization based on the discrete fracture-matrix (DFM) approach with a surrogate model to expedite computations. We employ a deep convolutional neural network (CNN) connected to a deep feed-forward neural network as the surrogate. The equivalent hydraulic conductivity tensor Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} is predicted based on the input tensorial spatial random fields (SRFs) of hydraulic conductivities, along with the cross-section and hydraulic conductivity of fractures. Three independent surrogates with the same architecture are trained, each with a different ratio of fracture-to-matrix hydraulic conductivity Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. As the ratio Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document} increases, the distribution of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} becomes more complex, leading to a decline in the prediction accuracy of the surrogates. The prediction accuracy improves as the fracture density decreases, regardless of the Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. We also investigate prediction accuracy for different correlation lengths of input SRFs. The observed speedup gained by surrogates varies from 4x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4}\varvec{\times }$$\end{document} to 28x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{28}\varvec{\times }$$\end{document} depending on the number of homogenization blocks. Upscaling by numerical homogenization and surrogate modeling is compared on two macroscale problems. For the first one, the accuracy of outcomes is directly correlated with the accuracy of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} predictions. For the latter one, we observe only a mild impact of the upscaling method on the accuracy of the results.
机构:
Imperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Imperial Coll London, Dept Brain Sci, 86 Wood Lane, London W12 0BZ, EnglandImperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Murphy, Alan E.
Askarova, Aydan
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Imperial Coll London, Dept Brain Sci, 86 Wood Lane, London W12 0BZ, EnglandImperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Askarova, Aydan
Lenhard, Boris
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, MRC London Inst Med Sci, Du Cane Rd, London W12 0HS, EnglandImperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Lenhard, Boris
Skene, Nathan G.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Imperial Coll London, Dept Brain Sci, 86 Wood Lane, London W12 0BZ, EnglandImperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
Skene, Nathan G.
Marzi, Sarah J.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Brain Sci, 86 Wood Lane, London W12 0BZ, England
Kings Coll London, UK Dementia Res Inst, 338 Euston Rd, London SE5 9RT, England
Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Basic & Clin Neurosci, 16 Crespigny Pk, London SE5 9RT, EnglandImperial Coll London, UK Dementia Res Inst, 86 Wood Lane, London W12 0BZ, England
机构:
Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Zhou, Xin
Zhang, Zhibo
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Zhang, Zhibo
Shi, Huibing
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Chambroad Petrochem Co Ltd, Binzhou 256500, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Shi, Huibing
Zhao, Deming
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Chambroad Petrochem Co Ltd, Binzhou 256500, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Zhao, Deming
Wang, Yaowei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Chambroad Petrochem Co Ltd, Binzhou 256500, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Wang, Yaowei
Luo, Haiyan
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Luo, Haiyan
Yan, Hao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Yan, Hao
Zhang, Weitao
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Zhang, Weitao
Wu, Lianying
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
Wu, Lianying
Yang, Chaohe
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R ChinaOcean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China