Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI

被引:0
|
作者
Garcia-Gutierrez, Fernando [1 ]
Hernandez-Lorenzo, Laura [1 ]
Cabrera-Martin, Maria Nieves [2 ]
Matias-Guiu, Jordi A. [3 ]
Ayala, Jose L. [1 ]
机构
[1] Univ Complutense, Dept Comp Architecture & Automat, Madrid, Spain
[2] Hosp Clin San Carlos, Inst Invest Sanitaria San Carlos IdISSC, Dept Nucl Med, Madrid, Spain
[3] Hosp Clin San Carlos, Inst Invest Sanitaria San Carlos IdISSC, Dept Neurol, Madrid, Spain
关键词
Neurodegenerative diseases; Alzheimer disease; Neuroimaging; Positron-emission tomography; Artificial intelligence; Machine learning; Deep learning; Automated pattern recognition; ALZHEIMERS-DISEASE; CONNECTIVITY; DECLINE; CORTEX; PET;
D O I
10.1016/j.neuroimage.2024.120695
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions of the disease, such as variations in brain metabolism assessed via [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI) who will progress to dementia (pMCI). Methods: We analyzed data from 1,617 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals. Finally, this model underwent further analysis using eXplainable AI (XAI) techniques. Results: Our results confirm a strong association between hypometabolism, disease progression, and cognitive decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training enhanced the models' ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the application of XAI techniques enabled us to delve into the brain regions with the most significant impact on model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical structures. Conclusion: This study introduces a novel dimension to predictive modeling in AD, emphasizing the importance of projecting variations in brain metabolism under a multi-task learning paradigm.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Predicting the Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using an Explainable AI Approach
    Grammenos, Gerasimos
    Vrahatis, Aristidis G.
    Vlamos, Panagiotis
    Palejev, Dean
    Exarchos, Themis
    [J]. INFORMATION, 2024, 15 (05)
  • [2] Predicting brain metabolism in elderly patients with cognitive impairment using deep learning
    Doering, E.
    Deusser, T.
    Hoenig, M.
    Bischof, G.
    Van Eimeren, T.
    Drzezga, A.
    Ellingsen, L.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 677 - 678
  • [3] Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns
    Lerch, Ondrej
    Ferreira, Daniel
    Stomrud, Erik
    van Westen, Danielle
    Tideman, Pontus
    Palmqvist, Sebastian
    Mattsson-Carlgren, Niklas
    Hort, Jakub
    Hansson, Oskar
    Westman, Eric
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2024, 16 (01)
  • [4] Predicting Progression from Mild Cognitive Impairment to Dementia with CAIDE Dementia Risk Score
    Pandya, S.
    Clem, M.
    Cullum, M.
    Woon, F.
    [J]. ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2015, 30 (06) : 530 - 531
  • [5] Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows
    Telma Pereira
    Luís Lemos
    Sandra Cardoso
    Dina Silva
    Ana Rodrigues
    Isabel Santana
    Alexandre de Mendonça
    Manuela Guerreiro
    Sara C. Madeira
    [J]. BMC Medical Informatics and Decision Making, 17
  • [6] Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows
    Pereira, Telma
    Lemos, Luis
    Cardoso, Sandra
    Silva, Dina
    Rodrigues, Ana
    Santana, Isabel
    de Mendonca, Alexandre
    Guerreiro, Manuela
    Madeira, Sara C.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2017, 17
  • [7] Predicting progression to dementia in persons with mild cognitive impairment using cerebrospinal fluid markers
    Handels, Ron L. H.
    Vos, Stephanie J. B.
    Kramberger, Milica G.
    Jelic, Vesna
    Blennow, Kaj
    van Buchem, Mark
    van der Flier, Wiesje
    Freund-Levi, Yvonne
    Hampel, Harald
    Rikkert, Marcel Olde
    Oleksik, Ania
    Pirtosek, Zvezdan
    Scheltens, Philip
    Soininen, Hilkka
    Teunissen, Charlotte
    Tsolaki, Magda
    Wallin, Asa K.
    Winblad, Bengt
    Verhey, Frans R. J.
    Visser, Pieter Jelle
    [J]. ALZHEIMERS & DEMENTIA, 2017, 13 (08) : 903 - 912
  • [8] Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia
    Naro, Antonino
    Corallo, Francesco
    De Salvo, Simona
    Marra, Angela
    Di Lorenzo, Giuseppe
    Muscara, Nunzio
    Russo, Margherita
    Marino, Silvia
    De Luca, Rosaria
    Bramanti, Placido
    Calabro, Rocco Salvatore
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2016, 53 (04) : 1375 - 1388
  • [9] A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment
    Stamate, Daniel
    Alghamdi, Wajdi
    Ogg, Jeremy
    Hoile, Richard
    Murtagh, Fionn
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 671 - 678
  • [10] Predicting Progression From Mild Cognitive Impairment to Alzheimer's Dementia With Adversarial Attacks
    Baytas, Inci M.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (06) : 3750 - 3761