A Note on Centralizers and Twisted Centralizers in Clifford Algebras

被引:0
|
作者
Filimoshina, Ekaterina [1 ,2 ]
Shirokov, Dmitry [1 ,3 ]
机构
[1] HSE Univ, Moscow 101000, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
关键词
Clifford algebra; geometric algebra; degenerate Clifford algebra; centralizer; twisted centralizer;
D O I
10.1007/s00006-024-01345-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates centralizers and twisted centralizers in degenerate and non-degenerate Clifford (geometric) algebras. We provide an explicit form of the centralizers and twisted centralizers of the subspaces of fixed grades, subspaces determined by the grade involution and the reversion, and their direct sums. The results can be useful for applications of Clifford algebras in computer science, physics, and engineering.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    BENKART, GM
    ISAACS, IM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 929 - 941
  • [32] Centralizers of Lie Structure of Triangular Algebras
    Fadaee, B.
    Fosner, A.
    Ghahramani, H.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [33] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    ISAACS, IM
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1980, 37 : 633 - 634
  • [34] Characterizations of Lie centralizers of triangular algebras
    Liu, Lei
    Gao, Kaitian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2375 - 2391
  • [35] Mal'cev algebras with supernilpotent centralizers
    Mayr, Peter
    ALGEBRA UNIVERSALIS, 2011, 65 (02) : 193 - 211
  • [36] Centralizers of Lie Structure of Triangular Algebras
    B. Fadaee
    A. Fošner
    H. Ghahramani
    Results in Mathematics, 2022, 77
  • [37] On Leibniz Algebras Whose Centralizers Are Ideals
    Pratulananda Das
    Ripan Saha
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1555 - 1571
  • [38] CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS
    He, Jun
    Li, Jiankui
    Qian, Wenhua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 685 - 696
  • [39] Centralizers of Iwahori-Hecke algebras
    Francis, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) : 2725 - 2739
  • [40] a-CENTRALIZERS OF GENERALIZED MATRIX ALGEBRAS
    Ashraf, M. O. H. A. M. M. A. D.
    Ansari, Mohammad Afajal
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 579 - 595