A Note on Centralizers and Twisted Centralizers in Clifford Algebras

被引:0
|
作者
Filimoshina, Ekaterina [1 ,2 ]
Shirokov, Dmitry [1 ,3 ]
机构
[1] HSE Univ, Moscow 101000, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
关键词
Clifford algebra; geometric algebra; degenerate Clifford algebra; centralizer; twisted centralizer;
D O I
10.1007/s00006-024-01345-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates centralizers and twisted centralizers in degenerate and non-degenerate Clifford (geometric) algebras. We provide an explicit form of the centralizers and twisted centralizers of the subspaces of fixed grades, subspaces determined by the grade involution and the reversion, and their direct sums. The results can be useful for applications of Clifford algebras in computer science, physics, and engineering.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] On centralizers of semisimple H*-algebras
    Vukman, Joso
    Kosi-Ulbl, Irena
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1063 - 1074
  • [22] Lie algebras with few centralizers
    Hoseiniravesh, Masoomeh
    Moghaddam, Mohammad Reza Rajabzadeh
    Ghouchan, Mohammad Farrokhi Derakhshandeh
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2867 - 2874
  • [23] Lie algebras with Abelian centralizers
    V. V. Gorbatsevich
    Mathematical Notes, 2017, 101 : 795 - 801
  • [24] θ-Centralizers on Semiprime Banach *-algebras
    Nikoufar, I.
    Rassias, Th. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (02) : 300 - 310
  • [25] ON JORDAN CENTRALIZERS OF TRIANGULAR ALGEBRAS
    Liu, Lei
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 223 - 234
  • [26] Buckling of a twisted rod with centralizers in a tubing
    Zhang, Qiang
    Wang, Xiaolong
    Li, Wei
    Xiao, Zhongmin
    Yue, Qianbei
    Zhu, Yu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 204
  • [27] A note on computing involution centralizers
    Ballantyne, John
    Rowley, Peter
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 1 - 8
  • [28] Classical W-algebras for Centralizers
    Molev, A., I
    Ragoucy, E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 691 - 703
  • [29] Centralizers in partially commutative Lie algebras
    Poroshenko, E. N.
    ALGEBRA AND LOGIC, 2012, 51 (04) : 351 - 371
  • [30] Centralizers in partially commutative Lie algebras
    E. N. Poroshenko
    Algebra and Logic, 2012, 51 : 351 - 371