Dmixnet: a dendritic multi-layered perceptron architecture for image recognition

被引:0
|
作者
Weixiang Xu [1 ]
Yaotong Song [1 ]
Shubham Gupta [2 ]
Dongbao Jia [3 ]
Jun Tang [4 ]
Zhenyu Lei [1 ]
Shangce Gao [1 ]
机构
[1] University of Toyama,Faculty of Engineering
[2] Motilal Nehru National Institute of Technology Allahabad,Department of Mathematic
[3] Jiangsu Ocean University,School of Computer Engineering
[4] Wicresoft Co Ltd,undefined
关键词
MLP-mixer; Dendritic neural unit; Dendritic channel module; Dendritic classifier; Image recognition;
D O I
10.1007/s10462-025-11123-y
中图分类号
学科分类号
摘要
In the field of image recognition, the all-MLP architecture (MLP-Mixer) shows superior performance. However, the current MLP-Mixer is solely based on fully connected layers. The nonlinear capability of fully connected layers is relatively weak, and their simple stacked structure has limitations under complex conditions. Therefore, inspired by the diversity of neurons in the human brain, we propose an innovative DMixNet, a dendritic multi-layered perceptron architecture. Rooted in the theory of dendritic neurons from neuroscience, we propose a dendritic neural unit (DNU) that enhances DMixNet with stronger biological interpretability and more robust nonlinear processing capabilities. The flexibility of dendritic structures allows the DNU to adjust its architecture to achieve different functionalities. Based on the DNU, we propose a novel channel fusion network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} and a dendritic classifier \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document}. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} substitutes the traditional two fully connected layers as the channel mixer, constructing a dendritic mixer layer to enhance the fusion capability of channel information within the entire framework. Meanwhile, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document} replaces the traditional linear classifier, effectively improving the model’s classification performance. Experimental results demonstrate that DMixNet achieves improvements of 2.13%, 4.79%, 4.71%, 23.14% on the CIFAR-10, CIFAR-100, Tiny-ImageNet and COIL-100 benchmark image recognition datasets, respectively, as well as a 14.78% enhancement on the medical image classification dataset PathMNIST, outperforming other state-of-the-art architectures. Code is available at https://github.com/KarilynXu/DMixNet.
引用
收藏
相关论文
共 50 条
  • [41] Calculation of Hybrid Multi-layered Perceptron Neural Network Output Using Matrix Multiplication
    Ann, Lee Yee
    Ehkan, P.
    Mashor, M. Y.
    Sharun, S. M.
    2016 3RD INTERNATIONAL CONFERENCE ON ELECTRONIC DESIGN (ICED), 2016, : 497 - 500
  • [42] Feasibility of multi-layered perceptron network in discriminating breast magnetic resonance imaging lesions
    Muthyala, S
    Gibbs, P
    Turnbull, L
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 2493 - 2495
  • [43] Transformation Architecture for Multi-Layered WebApp Source Code Generation
    Tesoriero, Ricardo
    Rueda, Alejandro
    Gallud, Jose A.
    Lozano, Maria D.
    Fernando, Anil
    IEEE ACCESS, 2022, 10 : 5223 - 5237
  • [44] MAFIA: Multi-layered Architecture For IoT-based Authentication
    Jain, Pranut
    Potter, Henrique
    Lee, Adam J.
    Mosse, Daniel
    2020 SECOND IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2020), 2020, : 199 - 208
  • [45] Transformation Architecture for Multi-Layered WebApp Source Code Generation
    Tesoriero, Ricardo
    Rueda, Alejandro
    Gallud, Jose A.
    Lozano, Maria D.
    Fernando, Anil
    IEEE Access, 2022, 10 : 5223 - 5237
  • [46] Multi-Layered Data Mining Architecture in the Context of Internet of Things
    Matei, Oliviu
    Anton, Carmen
    Scholze, Sebastian
    Cenedese, Claudio
    2017 IEEE 15TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2017, : 1193 - 1198
  • [47] MIRA: A multi-layered on-chip interconnect router architecture
    Park, Dongkook
    Eachempati, Soumya
    Das, Reetuparna
    Mishra, Asit K.
    Xie, Yuan
    Vijaykrishnan, N.
    Das, Chita R.
    ISCA 2008 PROCEEDINGS: 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 2008, : 251 - 261
  • [48] MIDAS: Multi-layered attack detection architecture with decision optimisation
    Mylonas, Alexios (a.mylonas@herts.ac.uk), 2025, 148
  • [49] A multi-layered behavioral architecture for semi-autonomous agents
    Naseer, Muhammad Immad
    Bokhari, Mohammed Sunil
    Ahmad, Ayaz
    Proceedings of the INMIC 2005: 9th International Multitopic Conference - Proceedings, 2005, : 742 - 748
  • [50] Multi-Layered Multi-Robot Control Architecture for the Robocup Logistics League
    Carlos Gonzalez, Jose
    Garcia-Olaya, Angel
    Fernandez, Fernando
    2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020), 2020, : 120 - 125