Dmixnet: a dendritic multi-layered perceptron architecture for image recognition

被引:0
|
作者
Weixiang Xu [1 ]
Yaotong Song [1 ]
Shubham Gupta [2 ]
Dongbao Jia [3 ]
Jun Tang [4 ]
Zhenyu Lei [1 ]
Shangce Gao [1 ]
机构
[1] University of Toyama,Faculty of Engineering
[2] Motilal Nehru National Institute of Technology Allahabad,Department of Mathematic
[3] Jiangsu Ocean University,School of Computer Engineering
[4] Wicresoft Co Ltd,undefined
关键词
MLP-mixer; Dendritic neural unit; Dendritic channel module; Dendritic classifier; Image recognition;
D O I
10.1007/s10462-025-11123-y
中图分类号
学科分类号
摘要
In the field of image recognition, the all-MLP architecture (MLP-Mixer) shows superior performance. However, the current MLP-Mixer is solely based on fully connected layers. The nonlinear capability of fully connected layers is relatively weak, and their simple stacked structure has limitations under complex conditions. Therefore, inspired by the diversity of neurons in the human brain, we propose an innovative DMixNet, a dendritic multi-layered perceptron architecture. Rooted in the theory of dendritic neurons from neuroscience, we propose a dendritic neural unit (DNU) that enhances DMixNet with stronger biological interpretability and more robust nonlinear processing capabilities. The flexibility of dendritic structures allows the DNU to adjust its architecture to achieve different functionalities. Based on the DNU, we propose a novel channel fusion network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} and a dendritic classifier \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document}. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} substitutes the traditional two fully connected layers as the channel mixer, constructing a dendritic mixer layer to enhance the fusion capability of channel information within the entire framework. Meanwhile, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document} replaces the traditional linear classifier, effectively improving the model’s classification performance. Experimental results demonstrate that DMixNet achieves improvements of 2.13%, 4.79%, 4.71%, 23.14% on the CIFAR-10, CIFAR-100, Tiny-ImageNet and COIL-100 benchmark image recognition datasets, respectively, as well as a 14.78% enhancement on the medical image classification dataset PathMNIST, outperforming other state-of-the-art architectures. Code is available at https://github.com/KarilynXu/DMixNet.
引用
收藏
相关论文
共 50 条
  • [31] Closed determination of the number of neurons in the hidden layer of a multi-layered perceptron network
    Kuri-Morales, Angel
    SOFT COMPUTING, 2017, 21 (03) : 597 - 609
  • [32] A Multi-layered Interaction Architecture for Elderly Companion Robot
    Tao, Yong
    Wei, Hongxing
    Wang, Tianmiao
    Chen, Diansheng
    INTELLIGENT ROBOTICS AND APPLICATIONS, PT I, PROCEEDINGS, 2008, 5314 : 538 - 546
  • [33] A Multi-layered Security Architecture for Modelling Critical Infrastructure
    Blackwell, Clive
    PROCEEDINGS OF THE 7TH EUROPEAN CONFERENCE ON INFORMATION WARFARE AND SECURITY, 2008, : 17 - 24
  • [34] Multi-Layered Architecture for Efficient and Accurate HRTF Rendering
    Marchan, Mick
    Allen, Andrew
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2023, 71 (06): : 338 - 348
  • [35] A MULTI-LAYERED ARCHITECTURE FOR COLLABORATIVE AND DECENTRALIZED CONSEQUENCE FINDING
    Chatalic, Philippe
    Fonseca, Andre de Amorim
    COMPUTING AND INFORMATICS, 2015, 34 (01) : 210 - 232
  • [36] Single Packet Authorization in a Multi-layered Security Architecture
    Mirheydari, Mohammad
    Zavarsky, Pavol
    Butakov, Sergey
    2018 29TH BIENNIAL SYMPOSIUM ON COMMUNICATIONS (BSC), 2018,
  • [37] Deflecting lithium dendritic cracks in multi-layered solid electrolytes
    Hu, Bingkun
    Zhang, Shengming
    Ning, Ziyang
    Spencer-Jolly, Dominic
    Melvin, Dominic L. R.
    Gao, Xiangwen
    Perera, Johann
    Pu, Shengda D.
    Rees, Gregory J.
    Wang, Longlong
    Yang, Lechen
    Gao, Hui
    Marathe, Shashidhara
    Burca, Genoveva
    Marrow, T. James
    Bruce, Peter G.
    JOULE, 2024, 8 (09) : 2623 - 2638
  • [38] Pulsed Multi-Layered Image Filtering: A VLSI Implementation
    Mayr, Christian
    Eisenreich, Holger
    Henker, Stephan
    Schueffny, Rene
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 15, 2006, 15 : 228 - 233
  • [39] A multi-layered image coding using multiple transforms
    Liu, Li-Xiong
    Wang, Yuan-Quan
    Wang, Wei-Wei
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3445 - +
  • [40] Image Restoration and Disparity Estimation from an Uncalibrated Multi-Layered Image
    Yano, Takahiro
    Shimizu, Masao
    Okutomi, Masatoshi
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 247 - 254