Dmixnet: a dendritic multi-layered perceptron architecture for image recognition

被引:0
|
作者
Weixiang Xu [1 ]
Yaotong Song [1 ]
Shubham Gupta [2 ]
Dongbao Jia [3 ]
Jun Tang [4 ]
Zhenyu Lei [1 ]
Shangce Gao [1 ]
机构
[1] University of Toyama,Faculty of Engineering
[2] Motilal Nehru National Institute of Technology Allahabad,Department of Mathematic
[3] Jiangsu Ocean University,School of Computer Engineering
[4] Wicresoft Co Ltd,undefined
关键词
MLP-mixer; Dendritic neural unit; Dendritic channel module; Dendritic classifier; Image recognition;
D O I
10.1007/s10462-025-11123-y
中图分类号
学科分类号
摘要
In the field of image recognition, the all-MLP architecture (MLP-Mixer) shows superior performance. However, the current MLP-Mixer is solely based on fully connected layers. The nonlinear capability of fully connected layers is relatively weak, and their simple stacked structure has limitations under complex conditions. Therefore, inspired by the diversity of neurons in the human brain, we propose an innovative DMixNet, a dendritic multi-layered perceptron architecture. Rooted in the theory of dendritic neurons from neuroscience, we propose a dendritic neural unit (DNU) that enhances DMixNet with stronger biological interpretability and more robust nonlinear processing capabilities. The flexibility of dendritic structures allows the DNU to adjust its architecture to achieve different functionalities. Based on the DNU, we propose a novel channel fusion network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} and a dendritic classifier \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document}. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} substitutes the traditional two fully connected layers as the channel mixer, constructing a dendritic mixer layer to enhance the fusion capability of channel information within the entire framework. Meanwhile, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document} replaces the traditional linear classifier, effectively improving the model’s classification performance. Experimental results demonstrate that DMixNet achieves improvements of 2.13%, 4.79%, 4.71%, 23.14% on the CIFAR-10, CIFAR-100, Tiny-ImageNet and COIL-100 benchmark image recognition datasets, respectively, as well as a 14.78% enhancement on the medical image classification dataset PathMNIST, outperforming other state-of-the-art architectures. Code is available at https://github.com/KarilynXu/DMixNet.
引用
收藏
相关论文
共 50 条
  • [21] Multi-layered deep learning perceptron approach for health risk prediction
    Thulasi Bikku
    Journal of Big Data, 7
  • [22] Tonotopic multi-layered perceptron: A neural network for learning long-term temporal features for speech recognition
    Chen, BY
    Zhu, QF
    Morgan, N
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 945 - 948
  • [23] Multi-layered image cache for scientific visualization
    LaMar, E
    Pascucci, V
    PVG 2003 PROCEEDINGS, 2003, : 61 - 67
  • [24] A multi-layered image cache for scientific visualization
    LaMar, E
    VISUALIZATION AND DATA ANALYSIS 2004, 2004, 5295 : 87 - 98
  • [25] Multi-layered image-based rendering
    Kang, SB
    Dinh, HQ
    GRAPHICS INTERFACE '99, PROCEEDINGS, 1999, : 98 - 106
  • [26] Multi-layered best basis image compression
    Yadav, D. M.
    Bormane, D. S.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL III, PROCEEDINGS, 2007, : 79 - 83
  • [27] Contextual swarm-based multi-layered lattices:: A new architecture for contextual pattern recognition
    Elliman, DG
    Youssef, SM
    DOCUMENT ANALYSIS SYSTEMS VI, PROCEEDINGS, 2004, 3163 : 496 - 507
  • [28] Closed determination of the number of neurons in the hidden layer of a multi-layered perceptron network
    Angel Kuri-Morales
    Soft Computing, 2017, 21 : 597 - 609
  • [29] Spectral acceleration prediction for strike, dip, and rake: a multi-layered perceptron approach
    Surendra Nadh Somala
    Sarit Chanda
    M. C. Raghucharan
    Evgenii Rogozhin
    Journal of Seismology, 2021, 25 : 1339 - 1346
  • [30] Spectral acceleration prediction for strike, dip, and rake: a multi-layered perceptron approach
    Somala, Surendra Nadh
    Chanda, Sarit
    Raghucharan, M. C.
    Rogozhin, Evgenii
    JOURNAL OF SEISMOLOGY, 2021, 25 (05) : 1339 - 1346