Learning to reconstruct accelerated MRI through K-space cold diffusion without noise

被引:0
|
作者
Shen, Guoyao [1 ,2 ]
Li, Mengyu [1 ,2 ]
Farris, Chad W. [3 ]
Anderson, Stephan [2 ,3 ]
Zhang, Xin [1 ,2 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Chobanian & Avedisian Sch Med, Boston Med Ctr, Dept Radiol, Boston, MA 02118 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
NETWORK;
D O I
10.1038/s41598-024-72820-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Improvement of spiral MRI with the measured k-space trajectory
    Ding, XP
    Tkach, J
    Ruggieri, P
    Perl, J
    Masaryk, T
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1997, 7 (05): : 938 - 940
  • [22] ANALYSIS OF NONSTATIONARY NOISE SOURCES USING SPACE K-SPACE REPRESENTATION
    BEGUET, P
    ZEGERMAN, F
    FLANDRIN, P
    JOURNAL DE PHYSIQUE, 1990, 51 (C2): : 777 - 780
  • [23] SPARKLING: variable-density k-space filling curves for accelerated T2*-weighted MRI
    Lazarus, Carole
    Weiss, Pierre
    Chauffert, Nicolas
    Mauconduit, Franck
    El Gueddari, Loubna
    Destrieux, Christophe
    Zemmoura, Ilyess
    Vignaud, Alexandre
    Ciuciu, Philippe
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (06) : 3643 - 3661
  • [24] CMRxRecon: A publicly available k-space dataset and benchmark to advance deep learning for cardiac MRI
    Wang, Chengyan
    Lyu, Jun
    Wang, Shuo
    Qin, Chen
    Guo, Kunyuan
    Zhang, Xinyu
    Yu, Xiaotong
    Li, Yan
    Wang, Fanwen
    Jin, Jianhua
    Shi, Zhang
    Xu, Ziqiang
    Tian, Yapeng
    Hua, Sha
    Chen, Zhensen
    Liu, Meng
    Sun, Mengting
    Kuang, Xutong
    Wang, Kang
    Wang, Haoran
    Li, Hao
    Chu, Yinghua
    Yang, Guang
    Bai, Wenjia
    Zhuang, Xiahai
    Wang, He
    Qin, Jing
    Qu, Xiaobo
    SCIENTIFIC DATA, 2024, 11 (01)
  • [25] Accelerating multi-echo MRI in k-space with complex-valued diffusion probabilistic model
    Cao, Ying
    Wang, Lihui
    Zhang, Jian
    Xia, Hui
    Yang, Feng
    Zhu, Yuemin
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 479 - 484
  • [26] SPRITE MRI with prepared magnetization and centric k-space sampling
    Mastikhin, IV
    Balcom, BJ
    Prado, PJ
    Kennedy, CB
    JOURNAL OF MAGNETIC RESONANCE, 1999, 136 (02) : 159 - 168
  • [27] Spectroscopic Lineshapes, k-Space Coverage, and Image Properties in MRI
    Wooten, E. Wrenn
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2010, 36A (03) : 187 - 209
  • [28] Does a k-space span limitation affect MRI resolution?
    Stoch, GJ
    Balcom, BJ
    CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2006, 29B (02) : 55 - 61
  • [29] On retrospective k-space subsampling schemes for deep MRI reconstruction
    Yiasemis, George
    Sanchez, Clara I.
    Sonke, Jan -Jakob
    Teuwen, Jonas
    MAGNETIC RESONANCE IMAGING, 2024, 107 : 33 - 46
  • [30] Optimizing k-Space Subsampling Pattern toward MRI Reconstruction
    Xuan K.
    Wang Q.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (04): : 367 - 374