Learning to reconstruct accelerated MRI through K-space cold diffusion without noise

被引:0
|
作者
Shen, Guoyao [1 ,2 ]
Li, Mengyu [1 ,2 ]
Farris, Chad W. [3 ]
Anderson, Stephan [2 ,3 ]
Zhang, Xin [1 ,2 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Chobanian & Avedisian Sch Med, Boston Med Ctr, Dept Radiol, Boston, MA 02118 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
NETWORK;
D O I
10.1038/s41598-024-72820-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Blind Parallel MRI Reconstruction with Arbitrary k-Space Trajectories
    Yu, Chengpu
    Zhang, Cishen
    Xie, Lihua
    PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 742 - 746
  • [32] Optimal variable-density K-SPACE sampling in MRI
    Lee, JH
    Osgood, B
    Nishimura, DG
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 237 - 240
  • [33] Compressed sensing MRI combined with SENSE in partial k-space
    Liu, F.
    Duan, Y.
    Peterson, B. S.
    Kangarlu, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (21): : N391 - N403
  • [34] Simple correction method for k-space trajectory deviations in MRI
    Duyn, JH
    Yang, YH
    Frank, JA
    van der Veen, JW
    JOURNAL OF MAGNETIC RESONANCE, 1998, 132 (01) : 150 - 153
  • [35] SPRITE MRI with Prepared Magnetization and Centric k-Space Sampling
    MRI Centre, Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada
    J. Magn. Reson., 2 (159-168):
  • [36] Correction of MR k-space data corrupted by spike noise
    Kao, YH
    MacFall, JR
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (07) : 671 - 680
  • [37] Region-of-interest MRI: K-SPACE sampling conditions
    Aggarwal, Nitin
    Bresler, Yoram
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 41 - +
  • [38] K-SPACE TRAJECTORY DESIGN FOR REDUCED MRI SCAN TIME
    Sharma, Shubham
    Hari, K. V. S.
    Leus, Geert
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1120 - 1124
  • [39] Optimal k-Space Sampling Scheme for Compressive Sampling MRI
    Vellagoundar, Jaganathan
    Reddy, M. Ramasubba
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [40] A Novel Retrospective 3D K-Space Sorting 4D-MRI Technique Using a Radial K-Space Acquisition MRI Sequence
    Liu, Y.
    Subashi, E.
    Yin, F.
    Cai, J.
    MEDICAL PHYSICS, 2016, 43 (06) : 3898 - 3898