Learning to reconstruct accelerated MRI through K-space cold diffusion without noise

被引:0
|
作者
Shen, Guoyao [1 ,2 ]
Li, Mengyu [1 ,2 ]
Farris, Chad W. [3 ]
Anderson, Stephan [2 ,3 ]
Zhang, Xin [1 ,2 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Chobanian & Avedisian Sch Med, Boston Med Ctr, Dept Radiol, Boston, MA 02118 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
NETWORK;
D O I
10.1038/s41598-024-72820-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Accelerated parallel magnetic resonance imaging by adaptive K-space sampling
    Aggarwal, N
    Bresler, Y
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 892 - 895
  • [42] Fast and Feasible: Two-Minute k-Space and Time accelerated Aortic Four-dimensional Flow MRI
    Francois, Christopher J.
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2019, 1 (02):
  • [43] Self-supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representations
    Spieker, Veronika
    Eichhorn, Hannah
    Stelter, Jonathan K.
    Huang, Wenqi
    Braren, Rickmer F.
    Rueckert, Daniel
    Costabal, Francisco Sahli
    Hammernik, Kerstin
    Prieto, Claudia
    Karampinos, Dimitrios C.
    Schnabel, Julia A.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII, 2024, 15007 : 614 - 624
  • [44] Multi-Contrast MRI Acceleration with K-Space Progressive Learning and Image Space Self-to-Peer Aggregation
    Xing, X.
    Yu, L.
    Zhu, L.
    Xing, L.
    Liu, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : S139 - S140
  • [45] MRI-Based Image Signal-to-Noise Ratio Enhancement with Different Receiving Gains in K-Space
    Wu, Lin
    Zhang, Shuang
    Zhang, Tao
    SENSORS, 2021, 21 (16)
  • [46] Automated parameter selection for accelerated MRI reconstruction via low-rank modeling of local k-space neighborhoods
    Ilicak, Efe
    Saritas, Emine Ulku
    Cukur, Tolga
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2023, 33 (02): : 203 - 219
  • [47] Accelerated and high-resolution cardiac T2 mapping through peripheral k-space sharing
    Darcot, Emeline
    Yerly, Jerome
    Colotti, Roberto
    Masci, Pier Giorgio
    Chaptinel, Jerome
    Feliciano, Helene
    Bianchi, Veronica
    van Heeswijk, Ruud B.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 220 - 233
  • [48] Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning
    Liu, Shaonan
    Li, Haoxiang
    Liu, Yuanyuan
    Cheng, Guanxun
    Yang, Gang
    Wang, Haifeng
    Zheng, Hairong
    Liang, Dong
    Zhu, Yanjie
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18):
  • [49] Motion artifact suppression in MRI using k-space overlap processing
    Kadah, Yasser M.
    PROCEEDINGS OF THE 25TH NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2008, 2008, : U221 - U229
  • [50] Partial K-Space MRI Reconstruction Using a Modified Homodyne Approach
    Abche, Antoine
    Yaacoub, Fadi
    Karam, Elie
    SPA 2010: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2010, : 56 - 61