A time-space fractional parabolic type problem: weak, strong and classical solutions

被引:0
|
作者
Idczak, Dariusz [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90382 Lodz, Poland
关键词
Riemann-Liouville derivative; Fractional Dirichlet-Laplace operator; Fractional abstract parabolic equation; Fractional diffusion; EQUATIONS;
D O I
10.1007/s13540-024-00363-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a generalized Riemann-Liouville type derivative of an abstract function of one variable and existence of a weak solution to an abstract fractional parabolic problem on [0, T] containing Riemann-Liouville derivative of a function of one variable and spectral fractional powers of a weak Dirichlet-Laplace operator to study existence of a strong solution to this problem. Our goal in this regard is to provide conditions that allow the transition from a weak to a strong solution. Next, we passage from the abstract problem to a classical one on [0,T]x Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \varOmega $$\end{document}, containing partial (with respect to time t is an element of[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,T]\,$$\end{document}) Riemann-Liouville derivative of the unknown real-valued function of two variables and fractional powers of a weak Dirichlet-Laplacian of this function (with respect to spatial variable x is an element of Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \varOmega $$\end{document}). The most important in this regard is a theorem on the relation of the fractional derivatives of an abstract function of one variable and real-valued one of two variables.
引用
收藏
页码:93 / 116
页数:24
相关论文
共 50 条
  • [31] Blow-up of solutions for a time-space fractional evolution system
    Xu, Yong Qiang
    Tan, Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (06) : 1067 - 1074
  • [32] The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation
    Yang, Fan
    Pu, Qu
    Li, Xiao-Xiao
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1229 - 1255
  • [33] Blow-up of solutions for a time-space fractional evolution system
    Yong Qiang Xu
    Zhong Tan
    Acta Mathematica Sinica, English Series, 2013, 29 : 1067 - 1074
  • [34] THE CALDERON PROBLEM FOR A SPACE-TIME FRACTIONAL PARABOLIC EQUATION
    Lai, Ru-Yu
    Lin, Yi-Hsuan
    Rueland, Angkana
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2655 - 2688
  • [35] Analysis and computation for quenching solution to the time-space fractional Kawarada problem
    Cao, Dingding
    Li, Changpin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (02) : 559 - 606
  • [36] Backward problem for time-space fractional diffusion equations in Hilbert scales
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 : 253 - 264
  • [37] Blow-up of Solutions for a Time-space Fractional Evolution System
    Yong Qiang XU
    Zhong TAN
    Acta Mathematica Sinica, 2013, 29 (06) : 1067 - 1074
  • [38] Difference numerical solutions for time-space fractional advection diffusion equation
    Fangfang Zhang
    Xiaoyang Gao
    Zhaokun Xie
    Boundary Value Problems, 2019
  • [39] Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation
    Meiirkhan B. Borikhanov
    Michael Ruzhansky
    Berikbol T. Torebek
    Fractional Calculus and Applied Analysis, 2023, 26 : 111 - 146
  • [40] Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 819 - 841